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1 Introduction. By an extension of a space X is meant a space
containing a dense set homeomorphic to X (also denoted by X). A point
in the extension not belonging to X is represented by a family of closed
sets in X with PFIP which consists of the intersections of X and the
closures of the neighborhoods of the point. The collection of all max-
imal families of closed sets in X with PFIP and suitable topology then
constitutes an H-closed extensions w(X) of X, called the Wallman H-
closed extensions and possesing properties similar to those of the Stone-
(ech compactification (T) of a completely regular space T. In par-
ticular, continuous functions on X can be continuously extended over
o(X) and there is a variant of the Stone-Cech theorem [8, p. 153] for
Hausdorff spaces.

There are two kinds o normal bases or spaces in literature" one
is given by Fan and Gottesman for compactificating regular spaces [4]
and the other is employed by Frink to identify complete regularity [6].
These bases are, in act, equivalent in regular spaces. A new concept,
called pseudo-normality which is similar to but more general than
normality, is introduced as a characterization of complete regularity.
The Fan-Gottesman compactification X* of a completely regular space
X is homeomorphic to the Stone-ech compactification fiX and is also
homeomorphic to Aleksandrov a’X [1, p. 405].

The Stone-Weierstrass approximation theorem and the Tietze ex-
tension theorem will be generalized to Hausdorff spaces. Aleksandrov
[2, Surveys, p. 54] and Pomonarov raised the question" for each com-
pletely regular space T whether the Stone-Weierstrass theorem holds
in the Wallman H-closed extension w(T) (topologically equivalent to
v(T) in [2]). A theorem due to Fan and Gottesman [4] sheds some light
on the problem and an affirmative answer is given in 4.

2. The Wallman H.cosed extensions.
Let X be a space, the amily of all closed subsets of X, and W(X)

the collection of all subfamilies of which possess the PFIP and are
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