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§1. Introduction. We have discussed in [2] the hypoellipticity
of linear partial differential operators of the form

(1) Pz%-l—L(t,x;Dac), w=(x, -, &) € R",
where D,=(—10/0%,, - -+, —10/0%,) and L(t,x; §) is a polynomial in

& € R™ of order 2p with coefficients in C~(R, X R3). In particular we
have been interested in operators which are called to be of Fokker-
Plank type. These were transformed by a change of independent vari-
able into one having properties (0), (I), (II) and (III) stated in Proposi-
tion 1 and Remark of [2] (see also Theorem 3 in § 2), and we could show
that if an operator possesses these properties, it has a very regular
right-parametrix (see Theorem 3 in § 2) and hence its transpose is hypo-
elliptic. Applying this theorem with I=[—1,1] and 4={(t,s); —1<s
<t<1}, we can prove, for example, the following

Theorem 1. Let, for real r,{r> be an integer such that r <{r><r
+1 and M, x; &) a polynomial in § € R™ of homogeneous order j with
coeffictents in C=(R, X R"). Then both the operator
(2) P='5a£‘+‘:zﬂ(:’t<ﬂ/zﬂ>Mj(t9x;Dx), l=0) 1) )
and its transpose P are hypoelliptic in R*"*'=R,X R", if l is even and
if for every compact set K of R**! there exists a constant 6 >0 such that
(3) Re M, (t,x; §)>0|5,  (t,®)e K, §e R

For the proof we use (9) with te[—1,1] and (¢,s), —1<s<t<1,
and Lemmas 1 and 2 in § 4.

On the other hand Kannai proved recently in [1] that the operator
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is hypoelliptic in the plane and moreover its transpose
0
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is not locally solvable there, of course not hypoelliptic. As an exten-
sion of this result we can give

Theorem 2., The transpose of operator (2), *P, with odd 1 is



