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In the previous notes [1], a few elementary properties of general-
ized channels are discussed. In the present note, some problems on
extended Toeplitz operators will be studied as a kind of generalized
channels.

1. In the classical theory of Toeplitz operators, a Laurent operator

l on L is defined by the multiplication by an essentially bounded func-
tion with functions of L2(( e L2--(f e L2) where L is the Hilbert space
of all square integrable functions defined on the unit circle with the
normalized Lebesgue measure. A Toeplitz operator t is defined by

( 1 ) t-pllH2,
where H is the subspace of L consisting those functions whose Fourier
coefficients vanish on negative integers and where p is the projection
belonging to H2.

An abstraction of the above situation is recently given by Devinatz
and Shinbrot [2]: An abstract Hilbert space H plays the role of L2,
and H is replaced by an arbitrary (closed) subspace M. Every ele-
ment a of B(H), the algebra of all (bounded linear) operators, defines
a general Wiener-Hopf operator
(1’) t(a) =palM,
where p is the projection belonging to M.

An another moderate abstraction is given by Douglas and Pearcy
[4]. Every element of a maximally abelian yon Neumann algebra A
plays the role of Laurent operator. If each vector of M is separating
in the sense of Dixmier [3] for A, M is called a weak Riesz space. If
M and M’-are weak Riesz subspaces for A, then M is called a Riesz
subspace. A Riesz system is the triple (H,A,M). Every element
a e A is called a generalized Laurent operator (simply (GL)operator)
and t(a) a generalized Toeplitz operator (simply (GT) operator).

2. Assume that A is a von Neumann algebra acting on H. Then
the both cases are unified: A B(H) for the case of Devinatz-Shinbrot
and A is maximally abelian for the case of Douglas-Pearcy. In the
below, instead of t(a), the following notation will be used:
(1") a=palM.


