103. On Some Examples of Non-normal Operators

By Masatoshi FUJII Fuse Senior Highschool

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Introduction. Following after the terminology of Halmos [4], consider a (bounded linear) operator T acting on a Hilbert space \mathfrak{G} . As usual, we shall call

$$W(T) = \{(Tx|x); ||x|| = 1\}$$

the numerical range of T and

$$r(T) = \sup \{ |\lambda|; \lambda \in \sigma(T) \}$$

the spectral radius of T, where $\sigma(T)$ is the spectrum of T. An operator T is called normaloid if ||T|| = r(T) and convexoid if $\overline{W}(T) = \operatorname{co} \sigma(T)$ where $\overline{W}(T)$ is the closure of W(T) and $\operatorname{co} S$ is the convex hull of S. We shall also say that an operator T satisfies the growth condition (G₁) if

$$\|(T-\lambda)^{-1}\| \leq \frac{1}{\operatorname{dist}(\lambda,\sigma(T))}$$

for any $\lambda \notin \sigma(T)$. An operator satisfying the condition (G₁) is a convexoid.

In a recent paper [7], Luecke proves the following theorem which gives a method of construction of operators satisfying the condition (G_1) :

Theorem A (Luecke). If A is an operator acting on a Hilbert space \mathfrak{H} , then there is an operator B acting on a Hilbert space \mathfrak{R} such that their direct sum $T = A \oplus B$ acting on $\mathfrak{H} \oplus \mathfrak{R}$ satisfies the condition (G₁).

In his proof, the desired B satisfies the normality and $\overline{W}(A) = \sigma(B)$. Using Theorem A, he can prove that there is an operator satisfying the condition (G₁) which is not a normaloid.

Inspired by Luecke's work and a seminar talk of R. Nakamoto (Theorem 5 in the below), we shall adapt the method to construct another examples of operators in §2 and apply them to study for a few relations between classes of non-normal operators in §3.

For our purpose, we shall introduce two classes of operators which are systematically discussed by Hildebrandt [5] without their names:

Definition B. An operator T is called a *numeroid* (resp. spectroid) if the closed numerical range $\overline{W}(T)$ (resp. the spectrum $\sigma(T)$) is a spectral set for T in the sense of von Neumann [8].