99. Note on Simple Semigroups

By Nobuaki KUROKI Department of Mathematics, Nihon University,

College of Science and Engineering

(Comm. by Kenjiro SHODA, M. J. A., May 12, 1971)

1. By a left (right) ideal of a semigroup S we mean a non-empty subset X of S such that $SX \subseteq \dot{X}$ ($XS \subseteq X$). By a two-sided ideal, or simply ideal, we mean a subset of S which is both a left and a right ideal of S. A semigroup S is called simple if it contains no proper twosided ideal. We denote by [x] the principal ideal of S generated by x of S. A semigroup S is called left (right) zero if xy=x (xy=y) for every $x, y \in S$. Let $\mathfrak{T}(S)$ be the set of all non-empty subsets of a semigroup S. A binary operation is defined in $\mathfrak{T}(S)$ as follows: For X, $Y \in \mathfrak{T}(S)$,

 $XY = \{xy; x \in X, y \in Y\}.$

Then it is easily seen that $\mathfrak{T}(S)$ is a semigroup.

Let $\mathfrak{F}(S)$ be the set of all ideals of a semigroup S and $\mathfrak{F}(S)$ the set of all principal ideals of S. It is clear that $\mathfrak{F}(S)$ is a subsemigroup of $\mathfrak{T}(S)$. The author proved in [2] that $\mathfrak{F}(S)$ is an idempotent semigroup if and only if $\mathfrak{F}(S)$ is an idempotent semigroup, and then both $\mathfrak{F}(S)$ and $\mathfrak{F}(S)$ are commutative. In this note we shall prove the following theorem:

Theorem 1. Let S be a semigroup. Then S is a simple semigroup if and only if any one of the following conditions (A)-(D) holds:

(A) $\Im(S)$ is a left zero semigroup.

(B) $\Im(S)$ is a right zero semigroup.

(C) $\mathfrak{P}(S)$ is a left zero semigroup.

(D) $\mathfrak{P}(S)$ is a right zero semigroup.

2. First we mention a result from our previous paper [2].

Lemma 2. The following statements on a semigroup S are equivalent:

(i) $X^2 = X$ for every $X \in \mathfrak{J}(S)$.

(ii) $X \cap Y = XY$ for every $X, Y \in \mathfrak{J}(S)$.

(iii) $[x]^2 = [x]$ for every $[x] \in \mathfrak{P}(S)$.

(iv) $[x] \cap [y] = [x][y]$ for every $[x], [y] \in \mathfrak{P}(S)$.

3. Proof of Theorem 1. Assume that S is simple, then it is clear that (A) holds. Conversely, if (A) holds, then, since $\Im(S)$ is an idempotent semigroup, it follows from (i), (ii) of Lemma 2 that

 $X = XY = X \cap Y$