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1. By a left (right) ideal of a semigroup S we mean a non-empty
subset X of S such that SXCX (XS<X). By a two-sided ideal, or
simply ideal, we mean a subset of S which is both a left and a right
ideal of S. A semigroup S is called simple if it contains no proper two-
sided ideal. We denote by [«x] the principal ideal of S generated by =
of S. A semigroup S is called left (right) zero if xy=x (xy=y) for
every 2,y € S. Let (S) be the set of all non-empty subsets of a semi-
group S. A binary operation is defined in T(S) as follows: For X,
Y e 2(S),

XY={ay;recX,ye Y}l
Then it is easily seen that T(S) is a semigroup.

Let I(S) be the set of all ideals of a semigroup S and PB(S) the set
of all principal ideals of S. It is clear that J(S) is a subsemigroup of
T(S). The author proved in [2] that J(S) is an idempotent semigroup
if and only if $(S) is an idempotent semigroup, and then both J(S)
and RB(S) are commutative. In this note we shall prove the following
theorem:

Theorem 1. Let S be a semigroup. Then S is a simple semigroup
if and only if any one of the following conditions (A)—(D) holds:

(A)  I(S) is a left zero semigroup.

B) J(S) is a right zero semigroup.

(C)  B(S) is a left zero semigroup.

(D) PB(S) is a right zero semigroup.

2. First we mention a result from our previous paper [2].

Lemma 2. The following statements on a semigroup S are
equivalent :

(i) X=X for every X e J(S).

(ii) XNY=XY for every X,Y ¢ J(S).

(iii) [x]P=I[x] for every [x] e B(S).

(iv) [zlN[yl=I[xlly] for every [x], [yl e P(S).

3. Proof of Theorem 1. Assume that S is simple, then it is clear
that (A) holds. Conversely, if (A) holds, then, since J(S) is an idem-
potent semigroup, it follows from (i), (ii) of Lemma 2 that

X=XY=XNY



