98. On Distributive Sublattices of a Lattice^{*)}

By Saburo TAMURA Yamaguchi University

(Comm. by Kenjiro Shoda, M. J. A., May 12, 1971)

In his note [1], B. Jónsson gave a necessary and sufficient condition that the sublattice generated by a subset H of a modular lattice should be distributive. This condition can be proved to be equivalent to the statement that $(a \cap c) \cup (b \cap c) = (a \cup b) \cap c$ for any a, b, c in H_1 , where H_1 consists of all elements which can be written as a finite join or a finite meet of elements in H. The main purpose of this paper is to prove that in order for the sublattice generated by a subset H of a lattice to be distributive it is a necessary and sufficient condition that $(a \cap c) \cup (b \cap c)$ $= (a \cup b) \cap c$ for any a, b, c in H_2 , where H_2 consists of all elements which can be written as a finite join or a finite meet of elements in H_1 .

Let $\langle H \rangle$ be a sublattice generated by a nonempty subset H of a lattice L. The finite join $\bigcup_{i=1}^{m} x_i$ of elements x_1, x_2, \dots, x_m in H is called a \cup -element in $\langle H \rangle$. The set of all \cup -elements in $\langle H \rangle$ is denoted by H_{\cup} and dually the set of all \cap -elements in $\langle H \rangle$ by H_{\cap} . One of \cup - or \cap -elements in $\langle H \rangle$ is said to be a 1st-element in $\langle H \rangle$, and the set of all 1st-elements in $\langle H \rangle$ is denoted by H_1 . The finite join $\bigcup_{i=1}^{m} x_i$ of \cap elements x_1, x_2, \dots, x_m in $\langle H \rangle$ is called a $\cup \cap$ -element in $\langle H \rangle$. The set of all $\cup \cap$ -elements in $\langle H \rangle$ is denoted by $H_{\cup \cap}$ and dually the set of all $\cap \cup$ -elements in $\langle H \rangle$ by $H_{\cap \cup}$. One of $\cup \cap$ - or $\cap \cup$ -elements in $\langle H \rangle$ is said to be a 2nd-element in $\langle H \rangle$, and the set of all 2nd-elements in $\langle H \rangle$ is denoted by H_2 .

Two modular laws will be denoted by

 μ : $(a \cap c) \cup (b \cap c) = ((a \cap c) \cup b) \cap c$, and

 $\mu^*: (a \cup c) \cap (b \cup c) = ((a \cup c) \cap b) \cup c.$

Four distributive laws will be denoted by

 $\delta: (a \cap c) \cup (b \cap c) = (a \cup b) \cap c,$

- $\delta^*: (a \cup c) \cap (b \cup c) = (a \cap b) \cup c,$
- $\Delta: \bigcup_{i=1}^{m} (x_i \cap y) = (\bigcup_{i=1}^{m} x_i) \cap y$, and
- $\Delta^*: \quad \bigcap_{i=1}^m (x_i \cup y) = (\bigcap_{i=1}^m x_i) \cup y.$

Theorem 1. Let $\langle H \rangle$ be the sublattice generated by a nonempty subset H of a lattice L. In order that $\langle H \rangle$ be distributive it is necessary and sufficient that Δ holds for any $x_i \in H$ $(i=1, 2, \dots, m)$ and any $y \in H_{\Omega}$ (or briefly Δ holds for H), and μ and μ^* hold for any $a, b, c \in H_2$

^{*)} Dedicated to Professor K. Asano on his sixtieth birthday.