98. On Distributive Sublattices of a Lattice*)

By Saburo Tamura
Yamaguchi University
(Comm. by Kenjiro Shoda, m. J. A., May 12, 1971)

In his note [1], B. Jónsson gave a necessary and sufficient condition that the sublattice generated by a subset H of a modular lattice should be distributive. This condition can be proved to be equivalent to the statement that $(a \cap c) \cup(b \cap c)=(a \cup b) \cap c$ for any a, b, c in H_{1}, where H_{1} consists of all elements which can be written as a finite join or a finite meet of elements in H. The main purpose of this paper is to prove that in order for the sublattice generated by a subset H of a lattice to be distributive it is a necessary and sufficient condition that $(a \cap c) \cup(b \cap c)$ $=(a \cup b) \cap c$ for any a, b, c in H_{2}, where H_{2} consists of all elements which can be written as a finite join or a finite meet of elements in H_{1}.

Let $\langle H\rangle$ be a sublattice generated by a nonempty subset H of a lattice L. The finite join $\bigcup_{i=1}^{m} x_{i}$ of elements $x_{1}, x_{2}, \cdots, x_{m}$ in H is called a \cup-element in $\langle H\rangle$. The set of all \cup-elements in $\langle H\rangle$ is denoted by H_{\cup} and dually the set of all \cap-elements in $\langle H\rangle$ by H_{n}. One of U - or \cap-elements in $\langle H\rangle$ is said to be a 1st-element in $\langle H\rangle$, and the set of all 1st-elements in $\langle H\rangle$ is denoted by H_{1}. The finite join $\bigcup_{i=1}^{m} x_{i}$ of $\cap-$ elements $x_{1}, x_{2}, \cdots, x_{m}$ in $\langle H\rangle$ is called a $\cup \cap$-element in $\langle H\rangle$. The set of all $\cup \cap$-elements in $\langle H\rangle$ is denoted by $H_{\cup \cap}$ and dually the set of all $\cap \cup$-elements in $\langle H\rangle$ by $H_{\cap \cup}$. One of $\cup \cap$ - or $\cap \cup$-elements in $\langle H\rangle$ is said to be a 2 nd-element in $\langle H\rangle$, and the set of all 2nd-elements in $\langle H\rangle$ is denoted by H_{2}.

Two modular laws will be denoted by

$$
\begin{aligned}
\mu: & (a \cap c) \cup(b \cap c)=((a \cap c) \cup b) \cap c, \text { and } \\
\mu^{*}: & (a \cup c) \cap(b \cup c)=((a \cup c) \cap b) \cup c .
\end{aligned}
$$

Four distributive laws will be denoted by

$$
\delta: \quad(a \cap c) \cup(b \cap c)=(a \cup b) \cap c
$$

$\delta^{*}: \quad(a \cup c) \cap(b \cup c)=(a \cap b) \cup c$,
$\Delta: \quad \bigcup_{i=1}^{m}\left(x_{i} \cap y\right)=\left(\bigcup_{i=1}^{m} x_{i}\right) \cap y$, and
$\Delta^{*}: \bigcap_{i=1}^{m}\left(x_{i} \cup y\right)=\left(\bigcap_{i=1}^{m} x_{i}\right) \cup y$.
Theorem 1. Let $\langle H\rangle$ be the sublattice generated by a nonempty subset H of a lattice L. In order that $\langle H\rangle$ be distributive it is necessary and sufficient that Δ holds for any $x_{i} \in H(i=1,2, \cdots, m)$ and any $y \in H_{\cap}$ (or briefly Δ holds for H), and μ and μ^{*} hold for any $a, b, c \in H_{2}$

[^0]
[^0]: *) Dedicated to Professor K. Asano on his sixtieth birthday.

