115. On a Theorem of K. Baumgartner

By Shigenao KIMURA and Hisao TOMINAGA Department of Mathematics, Okayama University (Comm. by Kenjiro Shoda, M. J. A., June 12, 1971)

Throughout, A will represent a ring with 1, B a unital subring of A which is Artinian semi-simple, and C, Z the centers of A, B, respectively. We shall use the following representation: $B=B_1\oplus\cdots\oplus B_n$, where B_j is an Artinian simple ring with the identity element f_j . Then, $Z_j=Zf_j$ is the center of B_j and $Z=Z_1\oplus\cdots\oplus Z_n$.

In what follows, we shall present a slight generalization of a theorem of K. Baumgartner [1] on division rings with finite centers and a sharpening of [1; Korollar 1].

Theorem 1. Let Z be finite. If A is prime or Artinian semisimple then the following conditions are equivalent:

- (1) C is finite.
- (2) The dimension dim $_BB \cdot C$ of the completely reducible B-module $B \cdot C$ is finite.
 - (3) There exists an integer k such that $\dim_B B[c] < k$ for all $c \in C$. Proof. (1) \Rightarrow (2) \Rightarrow (3): Trivial.
- $(3)\Rightarrow(1)$: If c is an arbitrary element of C then there holds $\dim_{B_j}B_j[cf_j]\leqslant\dim_{B}B[c]< k$. Since $B_j\cdot Cf_j=B_j\otimes_{Z_j}Z_j\cdot Cf_j$, there holds $[Z_j[cf_j]:Z_j]=[B_j[cf_j]:B_j]< k/\dim_{B_j}B_j$. If P_j is the prime field of Z_j , we obtain $[P_j[cf_j]:P_j]\leqslant [Z_j[cf_j]:Z_j]\cdot [Z_j:P_j]< k\cdot [Z_j:P_j]/\dim_{B_j}B_j$. If A is a prime ring then it is easy to see that f_jAf_j is a prime ring and the center C_j of f_jAf_j is an integral domain. On the other hand, if A is Artinian semi-simple then $f_jAf_j(\cong \operatorname{Hom}(_AAf_j,_AAf_j))$ is Artinian semi-simple and C_j is a finite direct sum of fields. Hence, in either case, the subring Cf_j of C_j is finite. It follows therefore the subring C of $Cf_1\oplus \cdots \oplus Cf_n$ is finite.

Theorem 2. Let A be semi-prime and left finite over B. In order that Z be finite, it is necessary and sufficient that C be finite.

Proof. As is well-known, the left Artinian semi-prime ring A is Artinian semi-simple: $A = A_1 \oplus \cdots \oplus A_m$, where A_i is an Artinian simple ring with the identity element e_i . Now, by the validity of Theorem 1, it remains only to prove the sufficiency. Since Be_i is a homomorphic image of B, Be_i is evidently Artinian semi-simple and A_i is left finite over Be_i . Recalling here that $Z \subseteq Ze_1 \oplus \cdots \oplus Ze_m$, we may restrict our attention to the case that A is simple. Then, there exists a system of