115. On a Theorem of K. Baumgartner

By Shigenao Kimura and Hisao Tominaga

Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1971)

Throughout, A will represent a ring with $1, B$ a unital subring of A which is Artinian semi-simple, and C, Z the centers of A, B, respectively. We shall use the following representation: $B=B_{1} \oplus \cdots \oplus B_{n}$, where B_{j} is an Artinian simple ring with the identity element f_{j}. Then, $Z_{j}=Z f_{j}$ is the center of B_{j} and $Z=Z_{1} \oplus \cdots \oplus Z_{n}$.

In what follows, we shall present a slight generalization of a theorem of K. Baumgartner [1] on division rings with finite centers and a sharpening of [1; Korollar 1].

Theorem 1. Let Z be finite. If A is prime or Artinian semisimple then the following conditions are equivalent:
(1) C is finite.
(2) The dimension $\operatorname{dim}_{B} B \cdot C$ of the completely reducible B module $B \cdot C$ is finite.
(3) There exists an integer k such that $\operatorname{dim}_{B} B[c]<k$ for all $c \in C$.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$: Trivial.
$(3) \Rightarrow(1):$ If c is an arbitrary element of C then there holds $\operatorname{dim}_{B_{j}} B_{j}\left[c f_{j}\right] \leqslant \operatorname{dim}_{B} B[c]<k$. Since $B_{j} \cdot C f_{j}=B_{j} \otimes_{Z_{j}} Z_{j} \cdot C f_{j}$, there holds $\left[Z_{j}\left[c f_{j}\right]: Z_{j}\right]=\left[B_{j}\left[c f_{j}\right]: B_{j}\right]<k / \operatorname{dim}_{B_{j}} B_{j}$. If P_{j} is the prime field of Z_{j}, we obtain $\left[P_{j}\left[c f_{j}\right]: P_{j}\right] \leqslant\left[Z_{j}\left[c f_{j}\right]: Z_{j}\right] \cdot\left[Z_{j}: P_{j}\right]<k \cdot\left[Z_{j}: P_{j}\right] / \operatorname{dim}_{B_{j}} B_{j}$. If A is a prime ring then it is easy to see that $f_{j} A f_{j}$ is a prime ring and the center C_{j} of $f_{j} A f_{j}$ is an integral domain. On the other hand, if A is Artinian semi-simple then $f_{j} A f_{j}\left(\cong \operatorname{Hom}\left({ }_{A} A f_{j},{ }_{A} A f_{j}\right)\right)$ is Artinian semi-simple and C_{j} is a finite direct sum of fields. Hence, in either case, the subring $C f_{j}$ of C_{j} is finite. It follows therefore the subring C of $C f_{1} \oplus \cdots \oplus C f_{n}$ is finite.

Theorem 2. Let A be semi-prime and left finite over B. In order that Z be finite, it is necessary and sufficient that C be finite.

Proof. As is well-known, the left Artinian semi-prime ring A is Artinian semi-simple: $A=A_{1} \oplus \cdots \oplus A_{m}$, where A_{i} is an Artinian simple ring with the identity element e_{i}. Now, by the validity of Theorem 1, it remains only to prove the sufficiency. Since $B e_{i}$ is a homomorphic image of $B, B e_{i}$ is evidently Artinian semi-simple and A_{i} is left finite over $B e_{i}$. Recalling here that $Z \subseteq Z e_{1} \oplus \cdots \oplus Z e_{m}$, we may restrict our attention to the case that A is simple. Then, there exists a system of

