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0. For a connected finite 4-dimensional CW-complex X we denote
the group of stable vector bundles over X by K,(X), and the group of
orientable stable vector bundles over X by K,(X). In the previous
paper [2] S. Sasao and the author determined the group structures of
)2¢ so(X) by cohomology rings. In this note we shall determine the
relation between K,(X) and Kg,(X). Our results include that K,(X)
=K o(X)+H'X; Z,) if and only if S¢'H(X; Z,)=0. The author wishes
to thank Professor S. Sasao for his valuable suggestions.

1. We can easily prove the following

Proposition 1. The sequence

0—— R o(X)—> B ()5 HY(X 3 Z,)—0
s exact, where i is a map which forgets the orientation and W, maps
each class [E] to the first Whitney class W(&) of a bundle & which
represents [£].
This proposition shows that K ,(X) is an element of EXT(H'(X ; Z,),
K so(X)). So we investigate this group.
Proposition 2. There exists an isomorphism

¢: EXT(H\(X; Z,), KSO(X>-—»§ (K 50(X) /2K 50(X)),

where r=dim H(X ; Z,).

Proof. We assume that H*(X; Z,)=>7_, Z,[a;], where [ ] denotes
the generator. Consider the follwing exact sequence

0—H—sF—15 H(X; Z,)——0
where F is a free abelian group generated by {f;} such that j(f)=aqa;.
By {h;} we denote generators of H corresponding to {2f;} via <. Then
we know that there exists an isomorphism
p: EXT(H\(X; Zy), K5o(X))—HOM(H, K 5,(X)) /image HOM(F, K 5,(X))
defined as follows. For an exact sequence
0—K 5o(X)—G—H'X; Z)—0 ,

we take a set {g,} of elements of G going to {«;}. And we take a set {y;} of
elements of K, (X) going to {2g9:}. Now we put p(G)(h,)=7,; then o(G)
is uniquely defined as an element of HOM(H, K 5,(X)) /2HOM(H, K s,(X))
=HOM(H, K 5,(X))/image HOM(F, K s,(X)). Let p: K5o(X)—K 50(X)




