136. On Finite Groups whose Subgroups have Simple Core Factors^{*)}

By John POLAND Carleton University, Ottawa, Canada

(Comm. by Kenjiro SHODA, M. J. A., Sept. 13, 1971)

If H is a subgroup of the finite group G then the core of H, denoted H_G , is $\bigcap_{x \in G} x^{-1}Hx$, the largest of the normal subgroups of G contained in H; the core factor of the subgroup H is H/H_G . G is called (see [1]) \mathfrak{X} -core (respectively, \mathfrak{X} -max-core) if all its subgroups (respectively, all its maximal subgroups) have core factors in the class \mathfrak{X} of finite groups. \mathfrak{X} -max-core groups have been classified, for some \mathfrak{X} , in [1] and [4], but little is known about \mathfrak{X} -core groups. Of course, if $\mathfrak{X}=\{1\}$, \mathfrak{X} -core groups are precisely the Hamiltonian groups; the purpose of this paper is to give information about \mathfrak{X} -core groups close to Hamiltonian groups-that is, groups whose core factors are relatively uncomplicated.

Throughout this paper, all groups considered are finite. Unless otherwise specified, references and notation are drawn from [3]. Let $\mathfrak{S}, \mathfrak{C}$, and \mathfrak{P} denote the classes of all groups which are simple, cyclic, and of prime-power order, respectively (including the trivial group). Then $\mathfrak{S} \cap \mathfrak{C} = \mathfrak{S} \cap \mathfrak{P}$ is the class of all groups of order a prime. We begin by showing that \mathfrak{S} -core groups are $\mathfrak{S} \cap \mathfrak{C}$ -core groups.

(1) Theorem. S-core groups are solvable.

Proof. We recall from [1] that subgroups and homomorphic images of \mathfrak{S} -core groups are again \mathfrak{S} -core groups. Now let G be a minimal counterexample. If $1 \neq N \triangleleft G, N \neq G$, then N and G/N are \mathfrak{S} core groups and by induction must be solvable, making G solvable, a contradiction. Therefore G is simple. But then all subgroups of G have trivial core and hence must be simple too-even the Sylow subgroups. This means G has only cyclic Sylow subgroups and so by a theorem of Hölder (p. 420, [3]) is solvable.

(2) Corollary. If G is an \mathfrak{S} -core groups and $H \leq G$ then H_G has index at most a prime in H.

(3) Corollary. If G is an \mathfrak{S} -core group then F(G), the Fitting subgroup, has index at most a prime in G.

Proof. This follows directly from Proposition (7) of [1].

^{*)} The writer thanks the National Research Council, The Ontario Government, and the Canadian Mathematical Congress for grants which enabled this work to be done.