136. On Finite Groups whose Subgroups have Simple Core Factors*)

By John Poland
Carleton University, Ottawa, Canada
(Comm. by Kenjiro Shoda, m. J. A., Sept. 13, 1971)

If H is a subgroup of the finite group G then the core of H, denoted H_{G}, is $\bigcap_{x \in G} x^{-1} H x$, the largest of the normal subgroups of G contained in H; the core factor of the subgroup H is $H / H_{G} . \quad G$ is called (see [1]) \mathfrak{X}-core (respectively, \mathfrak{X}-max-core) if all its subgroups (respectively, all its maximal subgroups) have core factors in the class \mathfrak{X} of finite groups. \mathfrak{X}-max-core groups have been classified, for some \mathfrak{X}, in [1] and [4], but little is known about \mathfrak{X}-core groups. Of course, if $\mathfrak{X}=\{1\}$, \mathfrak{X}-core groups are precisely the Hamiltonian groups; the purpose of this paper is to give information about \mathfrak{X}-core groups close to Hamiltonian groups-that is, groups whose core factors are relatively uncomplicated.

Throughout this paper, all groups considered are finite. Unless otherwise specified, references and notation are drawn from [3]. Let \mathfrak{S}, \mathfrak{C}, and \mathfrak{B} denote the classes of all groups which are simple, cyclic, and of prime-power order, respectively (including the trivial group). Then $\mathfrak{S} \cap \mathfrak{C}=\mathfrak{S} \cap \mathfrak{ß}$ is the class of all groups of order a prime. We begin by showing that \subseteq-core groups are $\mathfrak{\Im} \cap \mathfrak{C}$-core groups.
(1) Theorem. S-core groups are solvable.

Proof. We recall from [1] that subgroups and homomorphic images of \subseteq-core groups are again \subseteq-core groups. Now let G be a minimal counterexample. If $1 \neq N \triangleleft G, N \neq G$, then N and G / N are \subseteq core groups and by induction must be solvable, making G solvable, a contradiction. Therefore G is simple. But then all subgroups of G have trivial core and hence must be simple too-even the Sylow subgroups. This means G has only cyclic Sylow subgroups and so by a theorem of Hölder (p. 420, [3]) is solvable.
(2) Corollary. If G is an \subseteq-core groups and $H \leq G$ then H_{G} has index at most a prime in H.
(3) Corollary. If G is an S-core group then $F(G)$, the Fitting subgroup, has index at most a prime in G.

Proof. This follows directly from Proposition (7) of [1].

[^0]
[^0]: *) The writer thanks the National Research Council, The Ontario Government, and the Canadian Mathematical Congress for grants which enabled this work to be done.

