135. A Note on Distributive Sublattices of a Lattice

By Saburo TAMURA Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 13, 1971)

In [1], B. Jónsson gave a necessary and sufficient condition for a subset of a modular lattice to generate a distributive lattice. R. Balbes proved Jónsson's theorem without using Zorn's lemma in [2]. In [3], we gave a necessary and sufficient condition that the sublattice generated by a subset H of a lattice should be distributive. In this note we prove this theorem without using Zorn's lemma. And then the condition for the case of $H = \{x, y, z\}$ is expressed by seven lattice polynomial equations.

§1. The finite join of elements in H is called a \cup -element. The set of all \cup -elements is denoted by H_{\cup} and dually the set of all \cap -elements by H_{\cap} . The finite join of elements in H_{\cap} is called a $\cup \cap$ -element. The set of all $\cup \cap$ -elements is denoted by $H_{\cup \cap}$ and dually the set of all $\cap \cup$ -elements by $H_{\cap \cup}$.

Two modular laws will be expressed by $\mu: (a \cap c) \cup (b \cap c) = ((a \cap c) \cup b) \cap c, \text{ and}$ $\mu^*: (a \cup c) \cap (b \cup c) = ((a \cup c) \cap b) \cup c.$ Four distributive laws will be expressed by $\delta: (a \cap c) \cup (b \cap c) = (a \cup b) \cap c,$ $\delta^*: (a \cup c) \cap (b \cup c) = (a \cap b) \cup c,$ $\Delta: \bigcup_{i=1}^m (x_i \cap y) = (\bigcup_{i=1}^m x_i) \cap y, \text{ and}$ $\Delta^*: \bigcap_{i=1}^m (x_i \cup y) = (\bigcap_{i=1}^m x_i) \cup y.$

Theorem 1. Let H be a nonempty subset of a lattice L. In order for the sublattice of L generated by H to be distributive, it is necessary and sufficient that

 Δ holds for any $x_1, \dots, x_m \in H$ and any $y \in H_{\cap}$, μ holds for any $a \in H_{\cap}$ and any $b, c \in H_{\cup \cap}$, and μ^* holds for any $b \in H_{\cap}$ and any $a, c \in H_{\cup \cap}$.

Proof. The modular laws used in the proof of [2] are only those laws mentioned above.

Corollary 2. Let $\langle H \rangle$ be the sublattice generated by a nonempty subset H of a lattice. The following four statements are equivalent.

- (i) $\langle H \rangle$ is distributive.
- (ii) δ holds for any $a, b, c \in H_{\cup \cap}$.
- (iii) Δ holds for any $x_1, \dots, x_m \in H$ and any $y \in H_{\cap}$, and μ^* holds for any $a, b, c \in H_{\cup \cap}$.