156. On K-Souslin Spaces

By Michiko Nakamura
Department of Mathematics, Faculty of Science, Science University of Tokyo
(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1971)

A. Martineau defined in [1] the K-Souslin spaces as a generalization of the Souslin spaces. In this paper we shall show that the K Souslin spaces coincide with the quasi-Souslin spaces defined in [2].

Let E be a topological space, $\mathscr{P}(E)$ the set of all subsets of E, and $\mathcal{K}(E)$ the set of all non-empty compact subsets of E. We consider $\mathcal{P}(E)$ as the topological space where $\mathcal{P}(U)$ for all open sets U of E constitutes a basis of the open sets for $\mathcal{P}(E)$, and we consider in $\mathcal{K}(E)$ the relative topology of that of $\mathscr{P}(E)$.

A Hausdorff topological space E is said to be a K-Souslin space if there exist a complete separable metric space P and a continuous mapping φ from P to $\mathcal{K}(E)$ such that $E=\bigcup_{p \in P} \varphi(p)$.

Proposition 1. Every quasi-Souslin space E is a K-Souslin space.
Proof. Since E is a quasi-Souslin space, there exists a defining S-filters $\Phi_{m}(m=1,2, \cdots)$ such that each Φ_{m} has a filter base

$$
S_{n}^{(m)}(n=1,2, \cdots)
$$

For any sequence $n_{i}(i=1,2, \cdots)$ of natural numbers, $E_{n_{1}, n_{2}, \cdots, n_{i}}$ $=\left(S_{n_{1}}^{(1)}\right)^{c} \cap\left(S_{n_{2}}^{(2)}\right)^{c} \cap \cdots \cap\left(S_{n_{i}}^{(i)}\right)^{c}$ converges for $i \rightarrow \infty$ to the compact set $\bigcap_{i} E_{n_{1}, n_{2}, \cdots, n_{i}}^{-}$in $\mathscr{P}(E)$, since every ultrafilter containing all $E_{n_{1}, n_{2}, \cdots, n_{i}}$ converges.
Let P be the set of all sequences of natural numbers, that is $P=\prod_{i=1}^{\infty} N_{i}$ where each $N_{i}=N$, the set of all natural numbers with the discrete topology. Then P is a complete separable metric space.
Now we define a mapping φ from P to $\mathcal{K}(E)$ by $\varphi(p)=\bigcap_{i} E_{n_{1}, n_{2}, \cdots, n_{i}}^{-}$for all $\left\{n_{i}\right\}=p \in P$. Then we can see easily that φ is continuous and $E=\bigcup_{p \in P} \varphi(p)$.

Proposition 2. Every K-Souslin space is a quasi-Souslin space.
Proof. It is sufficient to prove for any Hausdorff topological space E the following fact.

If φ be a continuous mapping from a quasi-Souslin space F to $\mathcal{K}(E)$ and $E=\bigcup_{x \in F} \varphi(x)$, then E is a quasi-Souslin space.
Then, it is sufficient to prove that the subset

$$
D=\{(x, y) \mid x \in F, y \in \varphi(x)\}
$$

of $F \times E$ is quasi-Souslin, because E is the image of D by the projection from $F \times E$ to E.

