168. Freely Generable Classes of Structures

By Tsuyoshi FUJIWARA University of Osaka Prefecture

(Comm. by Kenjiro Shoda, M. J. A., Dec. 13, 1971)

A class K of structures is said to be freely generable, if for any (non-empty) set E of generator symbols and any set Ω of defining relations, there exists a freely generated structure in K presented by E and Ω . The conditions for a class of algebras to be freely generable were studied in [1; § 8 in Chap. III] and [2]. Our main purpose of this note is to show a new necessary and sufficient condition for a class of structures to be freely generable.

A structure a of the similarity type corresponding to a first order language L is simply called a structure for L. The domain of $\mathfrak A$ is denoted by $D[\mathfrak{A}]$. A formula Φ of L which contains at most some of x_1, \dots, x_n as free variables is denoted by $\Phi(x_1, \dots, x_n)$ if the free variables x_1, \dots, x_n need to be indicated. Let $\Phi(x_1, \dots, x_n)$ be any formula of L, and let a_1, \dots, a_n be elements in $D[\mathfrak{A}]$. Then we write $(\mathfrak{A}; a_1, \dots, a_n) \models \Phi(x_1, \dots, x_n), \text{ if } a_1, \dots, a_n \text{ satisfy } \Phi(x_1, \dots, x_n) \text{ in } \mathfrak{A}$ when the free variables x_1, \dots, x_n are assigned the values a_1, \dots, a_n respectively. An atomic formula of L means a formula of the form $t_1 = t_2$ or of the form $r(t_1, \dots, t_m)$, where r is an m-ary relation symbol of L and t_1, \dots, t_m are terms of L. Let $\mathfrak A$ and $\mathfrak B$ be structures for a first order language L. A mapping h of $D[\mathfrak{A}]$ onto (or into) $D[\mathfrak{B}]$ is called an L-homomorphism of \mathfrak{A} onto (or into) \mathfrak{B} , if for any atomic formula $\Theta(x_1,\dots,x_n)$ of L and for any elements a_1,\dots,a_n in $D[\mathfrak{A}],(\mathfrak{A};a_1,\dots,a_n)$ $\models \Theta(x_1, \dots, x_n) \text{ implies } (\mathfrak{B}; h(a_1), \dots, h(a_n)) \models \Theta(x_1, \dots, x_n).$ An Lhomomorphism h of $\mathfrak A$ onto $\mathfrak B$ is called an L-isomorphism of $\mathfrak A$ onto $\mathfrak B$ if the mapping h is one to one and the inverse mapping h^{-1} is also an L-homomorphism. Let E be a set of constant symbols (i.e. nullary operation symbols) not belonging to L. Then, a new first order language can be obtained from L by adjoining all the constant symbols $e \in E$, which is denoted by L(E). If L(E) contains at least one constant symbol, then E is said to be L-generative. Now let $\mathfrak A$ be a structure for L, and ψ a mapping of E into $D[\mathfrak{A}]$. Then \mathfrak{A} can be expanded to a structure for L(E), by considering $\psi(e)$ as interpretations of e in \mathfrak{A} , and the expanded structure is denoted by $\mathfrak{A}(\psi)$.

Let K be a class of structures for L. Let E be a set of constant symbols not belonging to L, and Ω a set of atomic sentences (i.e. atomic formulas without free variables) of L(E). Now let $\mathfrak A$ be a structure