No. 1]

6. Perfect Class of Spaces

By Keiô NAGAMI

Department of Mathematics, Ehime University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1972)

The author introduced in [6] the notion of perfect class of spaces and showed that the class of ν -spaces is perfect. Recall that a class \mathbb{C} of spaces is said to be perfect if the following five conditions are satisfied.

(1) If $X \in \mathfrak{C}$, then X is normal.

(2) If $X \in \mathbb{S}$ and $Y \subset X$, then $Y \in \mathbb{S}$.

(3) If $X_i \in \mathbb{G}$, $i=1, 2, \cdots$, then $\Pi X_i \in \mathbb{G}$.

(4) If $X \in \mathbb{C}$, then there exists $Z \in \mathbb{C}$ with dim $Z \leq 0$ such that X is the image of Z under a perfect mapping.

(5) If $X \in \mathbb{C}$ and Y is the image of X under a perfect mapping, then $Y \in \mathbb{C}$.

It is to be noted that the first three conditions imply that each element of \mathfrak{C} is perfectly normal. The aim of this paper is to show the existence of the maximal perfect subclass in the class of paracompact σ -spaces. A characterization theorem of dimension of cubic μ -spaces will also be stated. All spaces in this paper are assumed to be Hausdorff and all mappings to be continuous. The suffix *i* runs through the positive integers. Definitions for undefined terminologies can be seen in [6]. The discussion with Professor K. Morita at Shuzenji Hot Spring Symposium, 1970, was suggestive to the present study.

Lemma 1. If X is a paracompact Σ -space with dim X=0 and Y is a paracompact Morita space with dim Y=0, then dim $(X \times Y)=0$.

This can be proved by almost the same way as in the proof of [3, Theorem 3].

Lemma 2 ([1, Theorem 4]). Let X be the inverse limit of $\{X_i, \pi^i_j\}$, where each X_i is a normal space with dim $X_i \leq n$ and each π^i_j is open. If X is countably paracompact, then X is a normal space with dim $X \leq n$.

Lemma 3. Let X_i , $i=1, 2, \dots$, be paracompact Σ -spaces with dim $X_i=0$. Then dim $(\prod X_i)=0$.

Proof. Since a Σ -space is a Morita space by [2, Theorem 2.7], dim $(X_1 \times X_2) = 0$ by Lemma 1. Let $\prod_{i \leq j} X_i$, j > 2, be an arbitrary finite product. Since $\prod_{i < j} X_i$ is a paracompact Σ -space by [2, Theorem 3.13], we can prove easily dim $(\prod_{i \leq j} X_i) = 0$ by induction with the aid of Lemma 1. Since the infinite product $\prod X_i$ is paracompact by [2, Theorem 3.13], then dim $(\prod X_i) = 0$ by Lemma 2. The proof is finished.