2. A Note on Primitive Extensions of Rank 4 of Alternating Groups

By Shiro Iwasaki
Hokkaido University

(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1972)

1. In [11] and [5], the primitive extensions of rank 3 of symmetric groups or alternating groups which act naturally have been determined. More generally, E. Bannai has determined the primitive extensions of rank 3 of 4-ply transitive permutation groups ([1]). In this note we consider the primitive extensions of rank 4 of alternating groups which act naturally. Before stating our result, we note the following. It gives an example of primitive and imprimitive groups of an arbitrary rank.

Let H_{k} be the symmetric group S_{k} or the alternating group A_{k} which act naturally on $\{1,2, \cdots, k\}$ and let E_{k-1} be the elementary abelian group of order 2^{k-1}. Furthermore, let $a_{1}, a_{2}, \cdots, a_{k-1}$ be a minimal set of generators of E_{k-1} and put $a_{k}=a_{1} a_{2} \cdots a_{k-1}$. Every element σ of H_{k} induces an automorphism $\bar{\sigma}$ of E_{k-1} defined by

$$
\bar{\sigma}=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{k} & a_{1} a_{2} \\
a_{1 \sigma} a_{2 \sigma} & \cdots & a_{k} a_{1 \sigma} a_{2 \sigma} & \cdots
\end{array}\right) .
$$

Thus H_{k} is identified with an automorphism group of E_{k-1}. Construct the semidirect product $H_{k} \cdot E_{k-1}$ and let it act naturally on $\left\{H_{k} x \mid x \in E_{k-1}\right\}$, the set of right cosets of H_{k}. Then we have

Proposition (cf. 4 (iv) in Tsuzuku [11]). For $n \geqq 2, H_{2 n} \cdot E_{2 n-1}$ is an imprimitive rank $n+1$ group of degree $2^{2 n-1}$ with subdegrees $1,\binom{2 n}{1},\binom{2 n}{2}, \cdots,\binom{2 n}{n-1}, 1 / 2\binom{2 n}{n}$, and $H_{2 n+1} \cdot E_{2 n}$ is a primitive rank $n+1$ group of degree $2^{2 n}$ with subdegrees

$$
1,\binom{2 n+1}{1},\binom{2 n+1}{2}, \cdots,\binom{2 n+1}{n-1},\binom{2 n+1}{n}
$$

Theorem. Let A_{k} be the alternating group of degree k. If A_{k} has a primitive extension G of rank 4 , then $k=7$ and G is isomorphic to $A_{7} \cdot E_{6}$.

2. Outline of a proof of Theorem.

Notation.
S_{k} : The symmetric group of degree k.
A_{k} : The alternating group of degree k (on a set Δ_{1}).
G : A primitive extension of rank 4 of A_{k} on a set $\Omega=\{0,1,2$, $\cdots, k, \tilde{1}, \tilde{2}, \cdots, \tilde{l}, \overline{1}, \overline{2}, \cdots, \bar{m}\}$.

