2. A Note on Primitive Extensions of Rank 4 of Alternating Groups

By Shiro IWASAKI Hokkaido University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1972)

1. In [11] and [5], the primitive extensions of rank 3 of symmetric groups or alternating groups which act naturally have been determined. More generally, E. Bannai has determined the primitive extensions of rank 3 of 4-ply transitive permutation groups ([1]). In this note we consider the primitive extensions of rank 4 of alternating groups which act naturally. Before stating our result, we note the following. It gives an example of primitive and imprimitive groups of an arbitrary rank.

Let H_k be the symmetric group S_k or the alternating group A_k which act naturally on $\{1, 2, \dots, k\}$ and let E_{k-1} be the elementary abelian group of order 2^{k-1} . Furthermore, let a_1, a_2, \dots, a_{k-1} be a minimal set of generators of E_{k-1} and put $a_k = a_1 a_2 \dots a_{k-1}$. Every element σ of H_k induces an automorphism $\bar{\sigma}$ of E_{k-1} defined by

$$ar{\sigma} = egin{pmatrix} a_1 a_2 \cdots a_k & a_1 a_2 \cdots \ a_{1^\sigma} a_{2^\sigma} \cdots a_{k^\sigma} a_{1^\sigma} a_{2^\sigma} \cdots \end{pmatrix}$$

Thus H_k is identified with an automorphism group of E_{k-1} . Construct the semidirect product $H_k \cdot E_{k-1}$ and let it act naturally on $\{H_k x \mid x \in E_{k-1}\}$, the set of right cosets of H_k . Then we have

Proposition (cf. 4 (iv) in Tsuzuku [11]). For $n \ge 2$, $H_{2n} \cdot E_{2n-1}$ is an imprimitive rank n+1 group of degree 2^{2n-1} with subdegrees $1, \binom{2n}{1}, \binom{2n}{2}, \dots, \binom{2n}{n-1}, 1/2\binom{2n}{n}$, and $H_{2n+1} \cdot E_{2n}$ is a primitive rank n+1 group of degree 2^{2n} with subdegrees

1,
$$\binom{2n+1}{1}$$
, $\binom{2n+1}{2}$, \cdots , $\binom{2n+1}{n-1}$, $\binom{2n+1}{n}$.

Theorem. Let A_k be the alternating group of degree k. If A_k has a primitive extension G of rank 4, then k=7 and G is isomorphic to $A_7 \cdot E_6$.

2. Outline of a proof of Theorem.

Notation.

- S_k : The symmetric group of degree k.
- A_k : The alternating group of degree k (on a set Δ_i).
- G: A primitive extension of rank 4 of A_k on a set $\Omega = \{0, 1, 2, \dots, k, \tilde{1}, \tilde{2}, \dots, \tilde{l}, \tilde{1}, \tilde{2}, \dots, \tilde{m}\}.$