53. On a Theorem of I. Glicksberg

By Junzo Wada
Waseda University, Tokyo
(Comm. by Kinjirô Kunugı, m. J. A., April 12, 1972)

§1. Let A be a function algebra on a compact Hausdorff space X. Some time ago Hoffman and Wermer [4] showed that the set of real parts $\operatorname{Re} A$ of A cannot be closed in $C_{R}(X)$ unless $A=C(X)$. As a consequence of the Hoffman-Wermer result, Glicksberg [3] has recently proved the following theorem: Let A be a function algebra on a compact metric space X and I be a closed ideal in A. If $A+\bar{I}$ is a closed, then $\bar{I}=I$, where \bar{I} denotes the conjugate of I, i.e., $\bar{I}=\{\bar{f} ; f \in I\}$. The main purpose of this paper is to give some extensions of the Glicksberg theorem in the case where X is any compact Hausdorff space.

By a function algebra on X we denote a closed subalgebra in $C(X)$ containing constant functions and separating points in X, where $C(X)$ is the Banach algebra of all complex-valued continuous functions on X with the uniform norm. Throughout this paper X will indicate a compact Hausdorff space.

Our results are following
Theorem 1. Let A be a function algebra on a compact Hausdorff space X. Let N be a closed linear subspace in $C(X)$ and I be a closed ideal in A with $A+\bar{I} \supset N \supset I$. If $N+\bar{I}$ is closed, then $\bar{I}=I$.

Theorem 2. Let A be a function algebra on X. Let N be a closed linear subspace in A, I be a closed ideal in A and $N \cap I$ be an ideal in A. If $N+\bar{I}$ is closed, then $\overline{N \cap I}=N \cap I$.

Theorem 3. Suppose A is a function algebra on X and I, J are any two closed ideals in A. Then $I+\bar{J}$ is closed if and only if $\overline{I \cap J}$ $=I \cap J$.
§2. The following lemma is basic in our forthcoming proofs of these theorems.

Lemma 1. Let A be a function algebra on X. Let N be a closed linear subspace in $C(X)$ and I be a closed ideal in A. If $N+\bar{I}$ is closed, there is $c>0$ such that $c\|g+(N \cap \bar{I})\| \leq\|\operatorname{Re} g\|$ for any $g \in N \cap I$, where $\operatorname{Re} g$ denotes the real part of g and $\|f+(N \cap \bar{I})\|$ is the norm of the factor space $(N+\bar{I}) /(N \cap \bar{I})$, i.e., $\|f+(N \cap \bar{I})\|=\inf _{h \in N \cap \bar{I}}\|f+h\|$.

Proof. We note first that the mapping $\Phi: f+\bar{g}+(N \cap \bar{I}) \rightarrow f+$ $(N \cap \bar{I})(f \in N, g \in I)$ is well-defined as a linear mapping from the factor space $(N+\bar{I}) /(N \cap \bar{I})$ to $N /(N \cap \bar{I})$. For, if $\left(f_{1}+\bar{g}_{1}\right)-\left(f_{2}+\bar{g}_{2}\right) \in N \cap \bar{I}$

