No. 4]

53. On a Theorem of I. Glicksberg

By Junzo WADA

Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1972)

§1. Let A be a function algebra on a compact Hausdorff space X. Some time ago Hoffman and Wermer [4] showed that the set of real parts Re A of A cannot be closed in $C_R(X)$ unless A = C(X). As a consequence of the Hoffman-Wermer result, Glicksberg [3] has recently proved the following theorem: Let A be a function algebra on a compact metric space X and I be a closed ideal in A. If $A + \overline{I}$ is a closed, then $\overline{I} = I$, where \overline{I} denotes the conjugate of I, i.e., $\overline{I} = \{\overline{f}; f \in I\}$. The main purpose of this paper is to give some extensions of the Glicksberg theorem in the case where X is any compact Hausdorff space.

By a function algebra on X we denote a closed subalgebra in C(X) containing constant functions and separating points in X, where C(X) is the Banach algebra of all complex-valued continuous functions on X with the uniform norm. Throughout this paper X will indicate a compact Hausdorff space.

Our results are following

Theorem 1. Let A be a function algebra on a compact Hausdorff space X. Let N be a closed linear subspace in C(X) and I be a closed ideal in A with $A + \overline{I} \supset N \supset I$. If $N + \overline{I}$ is closed, then $\overline{I} = I$.

Theorem 2. Let A be a function algebra on X. Let N be a closed linear subspace in A, I be a closed ideal in A and $N \cap I$ be an ideal in A. If $N + \overline{I}$ is closed, then $\overline{N \cap I} = N \cap I$.

Theorem 3. Suppose A is a function algebra on X and I, J are any two closed ideals in A. Then $I+\overline{J}$ is closed if and only if $\overline{I\cap J} = I \cap J$.

§2. The following lemma is basic in our forthcoming proofs of these theorems.

Lemma 1. Let A be a function algebra on X. Let N be a closed linear subspace in C(X) and I be a closed ideal in A. If $N + \overline{I}$ is closed, there is c > 0 such that $c ||g + (N \cap \overline{I})|| \le ||\operatorname{Re} g||$ for any $g \in N \cap I$, where Re g denotes the real part of g and $||f + (N \cap \overline{I})||$ is the norm of the factor space $(N + \overline{I})/(N \cap \overline{I})$, i.e., $||f + (N \cap \overline{I})|| = \inf_{h \in N \cap \overline{I}} ||f + h||$.

Proof. We note first that the mapping $\Phi: f + \bar{g} + (N \cap \bar{I}) \rightarrow f + (N \cap \bar{I})$ $(f \in N, g \in I)$ is well-defined as a linear mapping from the factor space $(N + \bar{I})/(N \cap \bar{I})$ to $N/(N \cap \bar{I})$. For, if $(f_1 + \bar{g}_1) - (f_2 + \bar{g}_2) \in N \cap \bar{I}$