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1. Introduction. In the recent decade, the so-called harmonic
analysis of operators grew rapidly by the works mainly due to Sz.
Nagy’s school, cf. [5]. The main tool in their investigations is the
following strong dilation theorem due to Sz. Nagy:

Theorem A. If T is a contraction acting on a Hilbert space ,
then there is a unitary U acting on a Hilbert space including as
a subspace such that
(1) T=PUI (n-0, 1,2,...),
where P is the projection of onto .

By the importance of the theorem, several proofs are given, cf.
[5; Chapter I]. Some of them are based on the following general dila-
tion theorems due to Naimark, cf. [3], [5].

Theorem B. If F(A) is a positive operator-valued measure de-
fined on a a-field of sets and F(A) acts on , then there is a spectral
measure E(A) of 3 acting on including such that
( 2 ) F(A)=PE(A)I (A e ).

Theorem C. If V(g) is an operator-valued positive definite func-
tion defined on a group G and V(g) acts on , then there is a unitary
representation U(g) of G on including such that
( 3 ) V(g)-PU(g)I (g G).

However, there is an another general dilation theorem due to
Stinespring [4] and Umegaki [6] which receives less attentions:

Theorem D. If V(a) is a completely positive (or positive definite
in the sense of [6]) linear mapping of a .-algebra into (), the
algebra of all (bounded linear) operators acting on , then there is a
-homomorphism #(a) of into .() where includes and

satisfies
( 4 ) V(a) Pq(a) (a e ).

It seems to the authors that there is no literature which gives a
proof that Theorem D implies Theorem A. In 2, we shall give some
theorems proofs.

Umegaki [6] pointed out that Theorem C implies Theorem D if
is the group algebra of a locally compact group G. The converse of
this implication obviously follows from


