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1. Introduction.

In this note we shall consider a global property, that is, the quasi-
periodic property, of the solutions of the following quasilinear one
dimensional wave equation with dissipative term au,, where « is a
constant :

(1 ) M(u)———utt_uxw'l'aut:h(w, T, Uy Ug, Uy), )
where % is quasiperiodic with basic frequencies o,, - -,0, in t. We
shall show the existence of such quasiperiodic solutions of the form (1)
that have the same basic frequencies as 7 and satisfy the boundary
conditions (0, t) =u(x, t)=0. These solutions are classical solutions.

The case m=1 is the periodic case and was already solved by
Rabinowitz [1], [2]. Especially, in [2] equation is strictly nonlinear.

2. Notations and definitions.

Definition. f(z,t) is called quasiperiodic with basic frequencies
@y, * -+ -, 0 in t, if there exists a function F(«, 4, - - -, 6,,) such that f(x, t)
=F(z, wt, -+, 0,t), where F(zx,0,, --.,0,) is a continuous function of
period 2z in @,, - - -,0,,. Basic frequencies w,, - - -, w,, are real numbers.
We shall denote by B*w, :--,0,) the class of f(x,t) for which
F(x,0, -++,0,) is Ck-class in z,6,---6, and by Fw,-::,w,)
C B (w,, - -+, wy,) the class of f(x, t) which is 2z-periodic in (1< k< 00).
Every f(z,t) ¢ F* is expanded in the Fourier series if k=1:

f(x, )= Z mejkewxet(m,k)t_

jez,ke

We introduce the norms in F* by || fl|=>_ | fs| and
N =N+ Fall S
Now we assume that i(z, ¢, p, q, 7) is in the form
S, ) +9(,t,p, 49,7, f(z,1)=0.

Then we can represent g(x, t, », q, r) in the form G(x, w,t, - - -, 0, t, D, q, 1),
where G(z,6,, - - -, 0., D, ¢, 7) is continuous and 2z-periodicin d,, - - -, O,,.
Further we assume that f(x,t) and g(z,t,u,u,, u;) vanish at the
boundary =0, x=n.

3. The existence of quasiperiodic solutions.

3.1. At first we consider the case where the forcing term
h(zx, t, u, u,, ;) does not depend on wu, u,, u, :
(2) M(u)=utc—uwx+aut:f(x, t).



