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0o Some characterizations of the sphere among the closed strictly
convex hypersurfaces in Rn/l were given in [1].
In particular, the following theorem holds"
A closed strictly convex hypersurface with K_/K.-r is a hypersphere
of radius r, where Kn_l is the (n--1)-th mean curvature and Kn is the
Gaussian curvature.
Then, we prove

Theorem. Let M be a closed strictly convex hypersurface in
R+(n/>2). If the function Kn_/K on M is sufficiently close to r,
then M is arbitrary close to a hypersphere of radius r in the sense that
it can be enclosed between two concentric hyperspheres whose radius

is arbitrarily close to r.
For the case where n=2, D. Koutroufiotis proved in [3]. Our proof of
theorem is the same method of his proo in [3].

1. For the sake of simplicity, we shall assume our manifolds and
mappings to be of class C.
Let R+ be the (n+ 1)-dimensional euclidean space.
By a hypersurace in R+x we mean a n-dimensional connected manifold

M with an immersion x.
Suppose M to be oriented. Then to p e M, there is a uniquely deter-
mined unit normal vector (p) at x(p).
We put

I dx. dx, II d. dx.
Let k, ..., k, re called the principal curvatures, be the eigenvalues o
II relative to I. The i-th mean curvature K (1<i< n) is given by the

i-th elementary symmetric unction divided by () =n !/i !(n-i) i.e.,

n

In particular, K=/...k is called the Gaussian curvature. We shall
consider closed strictly convex hypersurtaees i.e., compact hypersur-
aces for which the Gaussian curvature K never vanishes on M.

We shall assume that the normal vector is interior. Let S be
the unit sphere in R+. We denote by g the induced Riemannian
metric on S.


