89. On Normal Approximate Spectrum. III

By Masatoshi FUJII^{*)} and Kazuhiro TAMAKI^{**)} (Comm. by Kinjirô KUNUGI, M. J. A., June 2, 1972)

1. Introduction. In the previous notes [3] and [5], we have discussed certain properties of the normal approximate spectra of operators on a Hilbert space \mathfrak{F} . A complex number λ is an *approxi*mate propervalue of T acting on \mathfrak{F} if there is a sequence $\{x_n\}$ of unit vectors such that

 $(*) \qquad \qquad \|(T-\lambda)x_n\| \to 0 \qquad (n\to\infty).$

The set $\pi(T)$ of all approximate propervalues is called the *approximate spectrum* of T. If there exists a sequence $\{x_n\}$ of unit vectors satisfying (*) and

 $(**) \qquad ||(T-\lambda)^*x_n|| \to 0 \qquad (n \to \infty),$

then λ is called a normal approximate propervalue of T, which is occasionally discussed by Hildebrandt [7], Stampfli [11] and Yoshino [12]. The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T. In general, $\pi_n(T)$ is a compact set in the plane and possibly void. Several equivalent conditions are discussed in [3], [5] and [9].

In the present note, we shall discuss some additional properties of the normal approximate spectra of operators. In § 2, we shall give a characterization of convexoids in terms of the normal approximate spectra. In a certain sense, a convexoid has sufficiently many normal approximate propervalues (Theorem 1), which is suggested by Prof. Z. Takeda, to whom the authors express their heaty thanks. In § 3, the normal approximate spectrum of the tensor product of operators is observed.

2. A characterization of convexoids. An operator T acting on a Hilbert space \mathfrak{F} is called a *convexoid* if

(1) $\overline{W}(T) = \operatorname{co} \sigma(T),$

where $\overline{W}(T)$ is the closure of the numerical range W(T) given by

(2) $W(T) = \{(Tx \mid x); ||x|| = 1\},\$

co S is the convex hull of S, and $\sigma(T)$ is the spectrum of T. The following theorem is suggested by Prof. Z. Takeda:

Theorem 1. An operator T is a convexoid if and only if the closed numerical range $\overline{W}(T)$ is spanned by the normal approximate

^{*)} Fuse Senior Highschool, Osaka.

^{**&#}x27; Department of Mathematics, Osaka Kyoiku University.