86. On Remainder Estimates in the Asymptotic Formula of the Distribution of Eigenvalues of Elliptic Operators

By Hiroki Tanabe
(Comm. by Kôsaku Yosida, m. J. A., June 2, 1972)

1. Introduction. Let Ω be a domain in R^{n} with boundary uniformly regular of class $m+1$. Let $\mathcal{A}=\sum a_{\alpha}(x) D^{\alpha}$ be a formally selfadjoint positively elliptic operator of order m with coefficients defined and bounded in Ω. Let A be a self-adjoint realization of \mathcal{A} with domain contained in $W_{2}^{m}(\Omega)$. By $N(t)$ we denote the number of eigenvalues $\leqq t$ of A. Assuming that the highest order coefficients of A are continuous R. Beals [2] investigated the asymptotic behaviour of the resolvent kernel and spectral function of A, and as an application of his results he proved that the asymptotic formula

$$
\begin{equation*}
N(t)=c_{0} t^{n / m}+O\left(t^{(n-\theta) / m}\right), \quad t \rightarrow \infty \tag{1.1}
\end{equation*}
$$

holds for any $0<\theta<h /(h+3)$ provided that the top-order coefficients of \mathcal{A} are uniformly Hölder continuous of order h. The object of this note is to improve the remainder estimate in (1.1) and prove the following theorem.

Theorem. Suppose Ω is bounded. Let A be a self-adjoint semibounded realization of \mathcal{A} with domain contained in $W_{2}^{m}(\Omega)$. If $m \leqq n / 2$ we make the additional assumption that A satisfies the resolvent condition for $2 \leqq q \leqq n / m+\varepsilon$ with some $\varepsilon>0$ ([2]), i.e. for each $\delta>0$ there are constants c_{1} and c_{2} such that $(A-\lambda)^{-1}$ induces a bounded operator from $L^{q}(\Omega)$ to $W_{q}^{m}(\Omega)$ and

$$
\left\|(A-\lambda)^{-1} u\right\|_{q} \leqq c_{1}|\lambda|^{-1}\|u\|_{q}
$$

for all $u \in L^{q}(\Omega),|\lambda| \geqq c_{2},|\arg \lambda| \geqq \delta$. If the highest order coefficients of A are uniformly continuous of order h, then

$$
\begin{equation*}
N(t)=c_{0} t^{n / m}+O\left(t^{(n-\theta) / m}\right) \tag{1.2}
\end{equation*}
$$

for any $0<\theta<h /(h+2)$, where

$$
c_{0}=(2 \pi)^{-n} \int_{\Omega} \int_{a(x, \xi)<1} d \xi d x
$$

If the highest order coefficients of \mathcal{A} belong to the class C^{1+h} in some domain containing $\bar{\Omega}$, then (1.2) holds for any $0<\theta<(h+1) /(h+3)$.
2. Outline of the proof of the main theorem.

If $m>n / 2$, we have only to apply the main theorem of K . Maruo [3] to the sesquilinear form $(A u, A v)$. Hence, in what follows we assume that $m \leqq n / 2$.

Lemma 1 (R. Beals [2]). If S and T are bounded operators in $L^{2}(\Omega)$ such that the ranges of S and T^{*} are contained in $L^{\infty}(\Omega)$. Then

