86. On Remainder Estimates in the Asymptotic Formula of the Distribution of Eigenvalues of Elliptic Operators

By Hiroki TANABE

(Comm. by Kôsaku Yosida, M. J. A., June 2, 1972)

1. Introduction. Let Ω be a domain in \mathbb{R}^n with boundary uniformly regular of class m+1. Let $\mathcal{A}=\sum a_a(x)D^a$ be a formally selfadjoint positively elliptic operator of order m with coefficients defined and bounded in Ω . Let A be a self-adjoint realization of \mathcal{A} with domain contained in $W_2^m(\Omega)$. By N(t) we denote the number of eigenvalues $\leq t$ of A. Assuming that the highest order coefficients of A are continuous R. Beals [2] investigated the asymptotic behaviour of the resolvent kernel and spectral function of A, and as an application of his results he proved that the asymptotic formula

 $N(t) = c_0 t^{n/m} + O(t^{(n-\theta)/m}), \quad t \to \infty$ (1.1) holds for any $0 < \theta < h/(h+3)$ provided that the top-order coefficients of \mathcal{A} are uniformly Hölder continuous of order h. The object of this note is to improve the remainder estimate in (1.1) and prove the following theorem.

Theorem. Suppose Ω is bounded. Let A be a self-adjoint semibounded realization of \mathcal{A} with domain contained in $W_2^m(\Omega)$. If $m \leq n/2$ we make the additional assumption that A satisfies the resolvent condition for $2 \leq q \leq n/m + \varepsilon$ with some $\varepsilon > 0$ ([2]), i.e. for each $\delta > 0$ there are constants c_1 and c_2 such that $(A - \lambda)^{-1}$ induces a bounded operator from $L^q(\Omega)$ to $W_q^m(\Omega)$ and

$$||(A-\lambda)^{-1}u||_q \leq c_1 |\lambda|^{-1} ||u||_q$$

for all $u \in L^q(\Omega)$, $|\lambda| \ge c_2$, $|\arg \lambda| \ge \delta$. If the highest order coefficients of \mathcal{A} are uniformly continuous of order h, then

$$U(t) = c_0 t^{n/m} + O(t^{(n-\theta)/m})$$
(1.2)

for any $0 < \theta < h/(h+2)$, where

$$c_0 = (2\pi)^{-n} \int_{\mathcal{Q}} \int_{a(x,\xi) < 1} d\xi dx.$$

If the highest order coefficients of \mathcal{A} belong to the class C^{1+h} in some domain containing $\overline{\Omega}$, then (1.2) holds for any $0 < \theta < (h+1)/(h+3)$.

2. Outline of the proof of the main theorem.

If m > n/2, we have only to apply the main theorem of K. Maruo [3] to the sesquilinear form (Au, Av). Hence, in what follows we assume that $m \leq n/2$.

Lemma 1 (R. Beals [2]). If S and T are bounded operators in $L^{2}(\Omega)$ such that the ranges of S and T^{*} are contained in $L^{\infty}(\Omega)$. Then