84. Rigidity for Elliptic Isometric Imbeddings

By Noboru TANAKA Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 2, 1972)

Introduction. We say that an isometric imbedding f of a Riemannian manifold M to the Euclidean space R^m is elliptic if the imbedding f is generic in a suitable sense and if the differential operator L associated with f is elliptic. We then establish a rigidity theorem (Theorem 2) for elliptic isometric imbeddings of compact Riemannian manifolds to R^m . Furthermore we apply this result to the rigidity problem associated with the canonical isometric imbedding f of a compact hermitian symmetric space M = G/H to the Euclidean space R^m , where $m = \dim G$ (see Theorems 3 and 4). Theorem 4 partially generalizes the classical theorem of Cohn-Vossen.

1. Throughout the present paper we shall always assume the differentiability of class C^{∞} .

Let M be an n-dimensional manifold. T denotes the tangent bundle of M and T^* its dual. S^2T^* denotes the vector bundle of symmetric tensors of type $\binom{0}{2}$ on M. Given a vector bundle E on M, $\Gamma(E)$ denotes the space of cross-sections of E. Let R^m be the m-dimensional Euclidean space. $\langle \; , \; \rangle$ denotes the inner product on R^m as a Euclidean vector space.

Let $\Gamma(M, m)$ be the vector space of all the maps u of M to \mathbb{R}^m and \mathfrak{E} the subset of $\Gamma(M, m)$ consisting of all the imbeddings f of M to \mathbb{R}^m . We assume $\mathfrak{E} \neq \phi$. For any $f \in \mathfrak{E}$, we denote by $\Phi(f)$ the Riemannian metric on M induced by the imbedding f:

$$\Phi(f) = \langle df, df \rangle = \sum_{k} (df_k)^2,$$

where $f = (f_1, \dots, f_m)$. Then the assignment $f \to \Phi(f)$ gives a map Φ of the set $\mathfrak E$ to the set $\mathfrak M$ of all the Riemannian metrics on M. For any $f \in \mathfrak E$, we define a differential operator Φ_{*f} of $\Gamma(M, m)$ to $\Gamma(S^2T^*)$, the differential of the map Φ at f, by

$$\Phi_{*f}(\mathbf{u}) = 2\langle df, d\mathbf{u} \rangle \ (\mathbf{u} \in \Gamma(M, m)).$$

2. Let f be an imbedding of M to \mathbb{R}^m . We put $\nu = \Phi(f)$. Let N be the normal vector bundle on M associated with the imbedding f; the fibre N_p over a point p of M may be identified with a subspace of the Euclidean vector space \mathbb{R}^m . It is well known that, for any vectors $X, Y \in T_p$, the derivative $V_X V_Y f$ is in the subspace N_p of \mathbb{R}^m , where V is the covariant differentiation associated with the Riemannian metric ν .