81. Qualitative Theory of Codimension-one Foliations

By Kazuo YAMATO Nagoya University

(Comm. by Kenjiro Shoda, M. J. A., June 2, 1972)

We shall give a method of studying topological properties of integral manifolds of a completely integrable one-form.

Suppose that we are given a connected, closed (n+1)-manifold V^{n+1} of class C^4 with a nonsingular, completely integrable one-form ω of class C^3 , $n \ge 1$. As in [1], a maximal connected integral manifold of ω will be called a leaf.

1. The critical cycles Σ . For each $p \in V$, by assumption, there is a local coordinate system (x^1, \dots, x^{n+1}) of class C^3 in a neighborhood U of p such that $\omega | U = f dx^{n+1}$ for some positive-valued C^3 function fon U. Then the set $(U, f, (x^1, \dots, x^{n+1}))$ is called an \mathcal{Z} -chart (at p). Denote by Σ the set of zeros of the exterior derivative of ω , i.e., $\Sigma = \{p \in V | (d\omega)_p = 0\}$.

Let $p \in \Sigma$. Let $(U, f, (x^1, \dots, x^{n+1}))$ be an \mathcal{F} -chart at p and put $j_x^2(f) = \left(f_{ij}(x); \begin{array}{c} i \downarrow 1, \dots, n \\ j \rightarrow 1, \dots, n \end{array}\right),$ $j_x^3(f) = \left(f_{ij}(x), \begin{array}{c} \partial \\ \partial x^i \end{array} \det j_x^2(f); \begin{array}{c} i \downarrow 1, \dots, n+1 \\ j \rightarrow 1, \dots, n \end{array}\right),$

where $f_{ij}(x) = \partial^2 f(x)/\partial x^i \partial x^j$. Let $i=0, 1, \dots, n$. The point p is said to be of type (i) if the matrix $j_p^2(f)$ is nonsingular and if the number of negative eigenvalues of $j_p^2(x)$ is equal to i. We say that p is of type (*) if det $j_p^2(f) = 0$. Of course, the type of a point of Σ is well defined independently of the choice of \mathcal{F} -charts. For $\lambda = 0, 1, \dots, n$ or *, let Σ_{λ} denote the set of points of type (λ). Then we have $\Sigma = \Sigma_* \cup \Sigma_0 \cup \cdots \cup \Sigma_n$ (disjoint union).

We shall assume that ω satisfies the following condition :

(T) For any $p \in \Sigma_*$, there is an \mathcal{F} -chart $(U, f, (x^1, \dots, x^{n+1}))$ at p such that the matrix $j_p^3(f)$ is nonsingular.

One sees then that the same condition holds for any \mathcal{F} -chart at $p \in \Sigma_*$. One will also see that this condition (T) is "generic".

2. The main theorems. Assume that ω satisfies the condition (T). Then we have the following three theorems.

Theorem I. If $\Sigma_0 \neq \emptyset$ and $\Sigma_1 = \emptyset$, then there exists a C^3 fibre bundle B^{n+1} over S^1 and a C^3 diffeomorphism $h: B^{n+1} \rightarrow V^{n+1}$ such that

(i) the fibre of B^{n+1} is a connected, simply connected, closed n-manifold of class C^3 .