81. Qualitative Theory of Codimension-one Foliations

By Kazuo Yamato
Nagoya University

(Comm. by Kenjiro Shoda, M. J. A., June 2, 1972)

We shall give a method of studying topological properties of integral manifolds of a completely integrable one-form.

Suppose that we are given a connected, closed ($n+1$)-manifold V^{n+1} of class C^{4} with a nonsingular, completely integrable one-form ω of class $C^{3}, n \geqslant 1$. As in [1], a maximal connected integral manifold of ω will be called a leaf.

1. The critical cycles $\boldsymbol{\Sigma}$. For each $p \in V$, by assumption, there is a local coordinate system (x^{1}, \cdots, x^{n+1}) of class C^{3} in a neighborhood U of p such that $\omega \mid U=f d x^{n+1}$ for some positive-valued C^{3} function f on U. Then the set $\left(U, f,\left(x^{1}, \cdots, x^{n+1}\right)\right.$) is called an \mathscr{F}-chart (at p). Denote by Σ the set of zeros of the exterior derivative of ω, i.e., Σ $=\left\{p \in V \mid(d \omega)_{p}=0\right\}$.

Let $p \in \Sigma$. Let $\left(U, f,\left(x^{1}, \cdots, x^{n+1}\right)\right)$ be an \mathscr{F}-chart at p and put

$$
\begin{aligned}
j_{x}^{2}(f) & =\left(f_{i j}(x) ; \begin{array}{c}
i \downarrow 1, \cdots, n \\
j \rightarrow 1, \cdots, n
\end{array}\right), \\
j_{x}^{3}(f) & =\left(f_{i j}(x), \frac{\partial}{\partial x^{i}} \operatorname{det} j_{x}^{2}(f) ; \begin{array}{c}
i \downarrow 1, \cdots, n+1 \\
j \rightarrow 1, \cdots, n
\end{array}\right),
\end{aligned}
$$

where $f_{i j}(x)=\partial^{2} f(x) / \partial x^{i} \partial x^{j}$. Let $i=0,1, \cdots, n$. The point p is said to be of type (i) if the matrix $j_{p}^{2}(f)$ is nonsingular and if the number of negative eigenvalues of $j_{p}^{2}(x)$ is equal to i. We say that p is of type (*) if $\operatorname{det} j_{p}^{2}(f)=0$. Of course, the type of a point of Σ is well defined independently of the choice of \mathscr{F}-charts. For $\lambda=0,1, \cdots, n$ or $*$, let Σ_{λ} denote the set of points of type (λ). Then we have $\Sigma=\Sigma_{*} \cup \Sigma_{0} \cup \cdots \cup \Sigma_{n}$ (disjoint union).

We shall assume that ω satisfies the following condition:
For any $p \in \Sigma_{*}$, there is an \mathscr{F}-chart $\left(U, f,\left(x^{1}, \cdots, x^{n+1}\right)\right.$) at p such that the matrix $j_{p}^{3}(f)$ is nonsingular.
One sees then that the same condition holds for any \mathcal{F}-chart at $p \in \Sigma_{*}$. One will also see that this condition (T) is "generic".
2. The main theorems. Assume that ω satisfies the condition (T). Then we have the following three theorems.

Theorem I. If $\Sigma_{0} \neq \emptyset$ and $\Sigma_{1}=\emptyset$, then there exists a C^{3} fibre bundle B^{n+1} over S^{1} and a C^{3} diffeomorphism $h: B^{n+1} \rightarrow V^{n+1}$ such that
(i) the fibre of B^{n+1} is a connected, simply connected, closed n manifold of class C^{3}.

