108. On Exponential Semigroups. II

By Takayuki Tamura and Thomas E. Nordahl
University of California, Davis, California, U. S. A.
(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1972)

1. Introduction. Tamura and Shafer proved in [3] the following :

Theorem 1. If S is an exponential archimedean semigroup with idempotent, then S is an ideal extension of I by N where I is the direct product of an abelian group G and a rectangular band B and N is an exponential nil-semigroup.

However, the converse is not necessarily true. For example, let $S=\{a, b, c, d\}$ be the semigroup of order 4 defined by $(x, y \in S)$

$$
x y=y \text { for } y \neq d \text { and all } x ; x d=a \text { for } x \neq c ; c d=b .
$$

S is the ideal extension of a right zero semigroup $\{a, b, c\}$ by a null semigroup of order 2. Associativity of S is easily verified, but S is not exponential:

$$
(c d)^{2}=b^{2}=b, \quad c^{2} d^{2}=c a=a
$$

The purpose of this paper is to prove Theorem 2 which characterizes exponential ideal extensions of I by N, and to give an alternate proof of the fact that I is completely simple. See the definition of the used terminology in [3] and [1]. The notation may be different from that in [1].

Theorem 2. S is an exponential archimedean semigroup with idempotent if and only if S is an ideal extension of the direct product $I=\Lambda \times G \times M$ of a left zero semigroup Λ, an abelian group G, and a right zero semigroup M by an exponential nil-semigroup N, with product determined by three partial homomorphisms $\varphi: N \backslash\{0\} \rightarrow M$, © : $N \backslash\{0\} \rightarrow G, \psi: N \backslash\{0\} \rightarrow \Lambda$ in the following manner. Let (λ, a, μ), $(\nu, b, \eta) \in \Lambda \times G \times M, s, t \in N \backslash\{0\}$.

$$
\left\{\begin{array}{l}
(\lambda, a, \mu) \cdot s=(\lambda, a(s \circlearrowleft \circlearrowleft), s \varphi) \tag{2.1}\\
s \cdot(\lambda, a, \mu)=(\psi s,(s \circlearrowleft) a, \mu) \\
(\lambda, a, \mu) \cdot(\nu, b, \eta)=(\lambda, a b, \eta) \\
s \cdot t= \begin{cases}s t & \text { if } s t \neq 0 \text { in } N \\
(\psi s,(s(\circlearrowleft)(t \circlearrowleft)), t \varphi) & \text { if } s t=0 \text { in } N\end{cases}
\end{array}\right.
$$

2. Alternate proof of complete simpleness of I. In [3] Anderson's theorem on bicyclic subsemigroup was used, but we will derive primitiveness of idempotent elements. Assume that S is an exponential archimedean semigroup. Let e be an idempotent element of S and let $I=S e S$. Since $I \subseteq S a S$ for all $a \in S, I$ is the kernel of S and hence I is simple. Let e and f be idempotents such that $e f=f e=f$. Now IeI
