105. A General Local Ergodic Theorem

By Yoshihiro Kubokawa
The Institute of Statistical Mathematics

(Comm. by Kôsaku Yosida, M. J. A., Sept. 12, 1972)

1. Introduction and the theorem. The purpose of this note is to prove a local ergodic theorem for a one-parameter semi-group of positive bounded linear operators on $L_{1}(X)$. A local ergodic theorem for a one-parameter semi-group of positive linear contractions was proved by Krengel [5], Ornstein [6], Akcoglu-Chacon [1] and Terrell [7] under little different conditions. Fong-Sucheston gave a proof of a local ergodic theorem for a special class of one-parameter semi-groups of positive uniformly bounded linear operators [4].

Let (X, \mathfrak{B}, m) be a σ-finite measure space and $L_{1}(X)=L_{1}(X, \mathfrak{B}, m)$ be the Banach space of real integrable functions on X. Let $\left(T_{t}\right)(t \geqslant 0)$ be a strongly continuous one-parameter semi-group of positive bounded linear operators on $L_{1}(X)$. This means that (1) T_{t} is a positive bounded linear operator on $L_{1}(X)$ for every $t \geqslant 0$ and $T_{0}=I$ (identity) (The positivity of T means that $T f \geqslant 0$, if $f \geqslant 0$.), (2) $T_{t+s} f=T_{t} \circ T_{s} f$ for any t, $s \geqslant 0$ and $f \in L_{1}(X)$, (3) $\lim _{t \rightarrow 0}\left\|T_{t} f-f\right\|=0$ for any $f \in L_{1}(X)$ (strong continuity). Then there exist constants M, β such that $\left\|T_{t}\right\| \leqslant M e^{\beta t}$ [9]. (If we can take $M=1, \beta=0$, then (T_{t}) is said to be a strongly continuous one-parameter semi-group of positive linear contractions.) By the strong continuity of $\left(T_{t}\right)$, there exists a function $g(t, x)$ such that for a fixed $t \geqslant 0, g(t, x)=\left(T_{t} f\right)(x)$ for a.e. x and $g(t, x)$ is $\mathfrak{R}^{+} \times \mathfrak{B}$-measurable, where \mathfrak{R}^{+}is the σ-algebra of Lebesgue measurable sets on the half real line $[0, \infty)$. The function with this property is uniquely determined in the class of $\mathfrak{R}^{+} \times \mathfrak{B}$-measurable functions [3,8]. We define the integral $\int_{a}^{b}\left(T_{t} f\right)(x) d t(0 \leqslant a<b<\infty)$ by $\int_{a}^{b} g(t, x) d t$.

We shall prove the following
Theorem. Let $\left(T_{t}\right)$ be a strongly continuous one-parameter semigroup of positive bounded linear operators on $L_{1}(X)$. Then we have

$$
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha} \int_{0}^{\alpha}\left(T_{t} f\right)(x) d t=f(x) \quad \text { a.e. for any } f \in L_{1}(X) .
$$

Corollary. If $g \geqslant 0$ and $g \in L_{1}(X)$, then we have

$$
\lim _{\alpha \rightarrow 0} \frac{\int_{0}^{\alpha}\left(T_{t} f\right)(x) d t}{\int_{0}^{\alpha}\left(T_{t} g\right)(x) d t}=\frac{f(x)}{g(x)} \quad \text { a.e. for any } f \in L_{1}(X)
$$

