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(Comm. by Kosaku YosIDA, M. J. A., Sept. 12, 1972)

1. Introduction and the theorem. The purpose of this note is to
prove a local ergodic theorem for a one-parameter semi-group of posi-
tive bounded linear operators on L,(X). A local ergodic theorem for a
one-parameter semi-group of positive linear contractions was proved
by Krengel [5], Ornstein [6], Akcoglu-Chacon [1] and Terrell [7] under
little different conditions. Fong-Sucheston gave a proof of a local
ergodic theorem for a special class of one-parameter semi-groups of
positive uniformly bounded linear operators [4].

Let (X, 8B, m) be a g-finite measure space and L,(X)=L,(X, B, m) be
the Banach space of real integrable functions on X. Let (T,)(t>0) be
a strongly continuous one-parameter semi-group of positive bounded
linear operators on L(X). This means that @ T, is a positive bounded
linear operator on L,(X) for every t>0 and T,=1 (identity) (The posi-
tivity of T means that Tf>0, if 1>0.), ® T,,,f=T,oT,f for any t,
s=0and f e L(X), ® lim,_,||T.f— f||=0 for any f € L,(X) (strong con-
tinuity). Then there exist constants M, 8 such that ||T,|<Me® [9].
(If we can take M =1, =0, then (7,) is said to be a strongly continu-
ous one-parameter semi-group of positive linear contractions.) By the
strong continuity of (T,), there exists a function g(¢, x) such that for a
fixed >0, g(t, )=(T,f)(x) for a.e. x and g(f, ) is * X B-measurable,
where & is the g-algebra of Lebesgue measurable sets on the half real
line [0, c0). The function with this property is uniquely determined in
the class of 2 X B-measurable functions [3,8]. We define the integral

Jb(Tt P@dt 0<a<b< o) by rg(t, 2)dt.

We shall prove the following
Theorem. Let (T,) be a strongly continuous one-parameter semi-
group of positive bounded linear operators on L(X). Then we have

lim L (T, ) @dt=r@  a.e. for any fe L(X).
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Corollary. If 9>0 and g € L,(X), then we have

@@ g

I“ @) a.e. for any f e Ly(X)
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