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1. Introduction and the theorem. The purpose of this note is to
prove a pointwise ergodic theorem for a positive bounded linear oper-
ator which generalizes those induced by non-singular measurable
transformations and Markov processes with an invariant measure.
Throughout this note, let (X, f, m) be a finite measure space. We
denote the norm and the operator norm in L(X) by I1 (l<p< c).
Let T be a positive bounded linear operator defined on L(X). (The
positivity means that Tf>/O, if f>0.) Put S=-=0 T, where T
=I (identity). In the sequel we assume that the operator T satisfies
the following conditions.
(A) There exists a constant K>0 such that

II(1/n)SII<K and II(1/n)Snll<g(n=l,2,...),
lim II(Tn/n)fll--O for any f e ix(X) and lim

(B)
for any f e L(X),

(C) If f>/O, feL(X) and liminfll(S/n)fll---0, then f-0.
We shall prove the following
Theorem. Let T be a positive bounded linear operator on LI(X).

If the operator T satisfies three conditions (A), (B) and (C), then a
pointwise ergodic theorem holds for T, that is, the limit

lim 1__ (Tf)(x)
n =0

exists almost everywhere for any f e LI(X) and it is in L(X).
Remark. The operator in the theorem includes those induced by

measure preserving transformations (the Birkhoff’s pointwise ergodic
theorem). Consider an operator induced by a non-singular measurable
transformation. Then we have a pointwise ergodic theorem for the
operator only if the operator satisfies the above condition (C). For
the operator induced by a Markov process, there exists a finite invariant
measure / with/m if and only if the operator satisfies the above
condition (C) [3]. The operator in the theorem includes a positive
invertible operator T with sup_<< Tlx and sup_<n<

2. The proof of the theorern.


