101. On Complex Parallelisable Manifolds and their Small Deformations

By Iku Nakamura
(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1972)

$\mathbf{0}^{\circ}$. Introduction. By a complex parallelisable manifold we mean a compact complex manifold with the trivial holomorphic tangent bundle. Wang [7] showed that a complex parallelisable manifold is the quotient space of a simply connected complex Lie group by one of its discreet subgroups.

This note is a preliminary report on our recent results on complex parallelisable manifolds and their small deformations. Details will appear in the forthcoming paper [5].
$\mathbf{1}^{\circ}$. Let X be a compact complex manifold of $\operatorname{dim} n$. We denote by \mathcal{O} and Ω^{p} the sheaf of germs of holomorphic functions and the sheaf of germs of holomorphic p-forms. We define $h^{p, q}=\operatorname{dim} H^{q}\left(X, \Omega^{p}\right), P_{m}$ $=\operatorname{dim} H^{\circ}\left(X,\left(\Omega^{n}\right)^{\otimes m}\right), r=$ the number of linearly independent closed holomorphic 1-forms, $\kappa=$ Kodaira dimension of X and $b_{i}=$ the i-th Betti number of X. S. Iitaka proposed the problem whether all P_{m} and κ are deformation-invariants ([1]).
$\mathbf{2}^{\circ}$. Proposition. A simply connected complex Lie group G of $\operatorname{dim}_{C} n$ is analytically homeomorphic to C^{n} as a complex manifold.

Proof. We shall prove the proposition by induction on n. It is obvious in case of $n=1$. Let the Lie group be G. If $n \geqq 2$, we can take a connected normal subgroup N. Then the canonical mapping $\pi: G \rightarrow G / N$ defines a holomorphic fiber bundle. Since both G / N and N are connected and simply connected we obtain the proposition by the induction hypothesis and Grauert's theorem.
3°. We define a complex parallelisable manifold to be solvable if the corresponding Lie group is solvable. From now on we assume X to be solvable. Note that the universal covering of X is analytically homeomorphic to C^{n} by the above Proposition.

Theorem 1. Three dimensional solvable manifolds are classified into the following four classes.

	Lie group	b_{1}	r	$h^{0,1}$	Structure (Albanese mapping)
(1)	abelian	6	3	3	complex torus
(2)	nilpotent	4	2	2	T^{1}-bundle over T^{2}
(3a)	solvable	2	1	1	T^{2}-bundle over T^{1}
(3b)	solvable	2	1	3	T^{2}-bundle over T^{1}

