133. Note on Singular Perturbation of Linear Operators

By Atsushi Yoshikawa*)

Department of Mathematics, Hokkaido University

(Comm. by Kôsaku Yosida, M. J. A., Oct. 12, 1972)

0. Introduction. Consider the following problem in a Banach space X:

(0.1)
$$\begin{cases} \frac{\partial u(t,\varepsilon)}{\partial t} + A(\varepsilon)u(t,\varepsilon) = 0, & t > 0, \\ u(0,\varepsilon) = a. \end{cases}$$

Here ε is a positive parameter, $0 < \varepsilon \leq 1$, $A(\varepsilon) = \varepsilon A + B$, and $a \in X$. We assume that A and B are closed linear operators in X with $\mathbf{D}(A) \subset \mathbf{D}(B)$ and that $-A(\varepsilon)$ with $\mathbf{D}(A(\varepsilon)) = \mathbf{D}(A)$ generates a strongly continuous semi-group of bounded operators in X (i.e., of class (C_0)), uniformly with respect to ε ; that is, with a constant M > 0,

 $\|\exp\left(-tA(\varepsilon)\right)\| \leq M$

for all $t \geq 0$ and $0 < \varepsilon \leq 1$.

The (mild) solution of (0.1) is given by

(0.3) $u(t, \varepsilon) = \exp(-tA(\varepsilon))a, \quad t \ge 0, \ a \in X.$ The map $]0, 1] \in \varepsilon \mapsto u(t, \varepsilon) \in X$ is strongly continuous as seen immediately from the Trotter-Kato theorem (see Yosida [3], Kato [2]). However,

 $u(t,\varepsilon)$ may not be convergent as $\varepsilon \rightarrow 0$.

In the present note, we discuss a sufficient condition for the convergence of $u(t,\varepsilon)$ as $\varepsilon \to 0$. For that purpose, we introduce the set $C(p,\theta)$, p>1, $\theta < p-1$. $C(p,\theta)$ consists of all such elements b in $\mathbf{D}(A)$ that

(0.4)
$$\int_0^1 \varepsilon^{\theta} \sup_{t\geq 0} \|A \exp(-tA(\varepsilon))b\|^q d\varepsilon < \infty.$$

It is easy to see that $C(p,\theta') \subset C(p,\theta)$ if $\theta' \leq \theta$ and $C(q,\theta') \subset C(p,\theta)$ if $q \geq p$, $p\theta' \leq q\theta$.

Then we obtain the following

Theorem. Let $b \in C(p, \theta)$ for some $p, \theta, 1 . Then$ $exp <math>(-tA(\varepsilon))b$ converges strongly to an element $b(t) \in X$ as $\varepsilon \to 0$, uniformly with respect to t in every compact interval. Furthermore, $(0.5) \exp(-tA(\varepsilon))b = b(t) + O(\varepsilon^{\rho}), \quad 0 < \rho < 1 - \theta/(p-1).$

Here $O(\varepsilon^{\rho})$ denotes the element in X such that $\varepsilon^{-\rho}O(\varepsilon^{\rho})$ remains bounded as $\varepsilon \rightarrow 0$, uniformly in t in every compact interval.

Let $D = \bigcup_{p>1} \bigcup_{\theta < p-1} C(p, \theta)$. Then we immediately have Corollary. Let D be dense in X. Then there is an extension B_1

⁹ Supported by the Sakkokai Foundation.