132. On Characters and Unipotent Elements of Finite Chevelley Groups

By Noriaki KAWANAKA Department of Mathematics, Osaka University

(Comm. by Kunihiko KODAIRA, M. J. A., Oct. 12, 1972)

The purpose of the present paper is to give some results concerning (complex) characters and unipotent elements of finite Chevelley groups. Main results are proved by two simple lemmas stated in section 1. Throughout the paper G denotes a connected reductive linear algebraic group defined over a finite field k of q elements. For simplicity we also assume that G has a maximal torus T which splits over k. If L is an algebraic subgroup of G defined over k, L(k) denotes the finite group of its k-rational elements. If S is a finite set, |S| denotes the number of its elements. For a finite group H and class functions ϕ_1 and ϕ_2 on H, the inner product $(\phi_1, \phi_2)_H$ is defined by

$$(\phi_1, \phi_2)_H = \sum_{x \in H} \phi_1(x) \overline{\phi_2(x)} / |H|.$$

If *K* is a subgroup of *H* and θ is a class function on *K*, $i[\theta; K \rightarrow H]$ (or $i[\theta]$) denotes the class function on *H* induced by θ .

1. Let W be the Weyl group of G relative to T and B a fixed Borel k-subgroup of G containing T. B determines a set Φ_+ of positive roots and a set Δ of simple roots in the system Φ of roots of G relative to T. For each subset δ of Δ , let P_{δ} be the parabolic k-subgroup corresponding to δ and G_{δ} , U_{δ} its Levi k-subgroup and unipotent radical (see § 3 of the paper of A. Borel and J. Tits in Publ. de Math. I. H. E. S. n°27 (1965)). G_{δ} is connected reductive and the root system Φ_{δ} of G_{δ} relative to T is spanned by δ . We denote by W_{δ} the Weyl group of G_{δ} relative to T.

Lemma 1 (L. Solomon, C. W. Curtis). (a) Let 1_{δ} be the 1-character of W_{δ} and ε the alternating character of W. Then

$$\epsilon = \sum_{\delta \subset d} (-1)^{|\delta|} i[1_{\delta}; W_{\delta} \rightarrow W].$$

(b) Let $P_{\delta}^{1}(k)$ be the set of unipotent elements of $P_{\delta}(k)$ and θ_{δ} be the class function on $P_{\delta}(k)$ defined by

If we put (1.1)

) $\Theta = \sum_{\delta \subset \mathcal{A}} (-1)^{|\delta|} i[\theta_{\delta}; P_{\delta}(k) \rightarrow G(k)],$

then

$$\Theta(x) = \begin{cases} q^m & \text{if } x = 1, \\ 0 & \text{otherwise,} \end{cases}$$