131. On Certain Identities between the Traces of Hecke Operators

By Hiroaki Hisıkata
(Comm. by Kunihiko Kodaira, m. J. A., Oct. 12, 1972)

Linear relations between the traces of Hecke operators and those of the Brandt matrices were first obtained by Eichler [1] and [2], then generalized by Shimizu [6]. In this note, we shall further generalize (with respect to the levels of the groups involved) and in a sense sharpen (by restricting the operators to the essential parts) their results.

Let $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} denote the set of integers, rational numbers, real numbers and complex numbers respectively. For a prime p, let \boldsymbol{Z}_{p} and Q_{p} denote the set of p-adic integers and p-adic numbers. For a ring M with a unity, let M^{\times}denote the group of invertible elements of M.

Let B be a quaternion algebra having Q as its center. Let d^{2} be its discriminant, i.e. d is a product of all distinct primes p where the completion $B_{p}=B \otimes \boldsymbol{Q}_{p}$ is a division algebra. We admit the case where $d=1$, namely B is the two by two total matrix algebra $M_{2}(Q)$. Let N be a product of d and a natural number M prime to $d, N=d M,(d, M)=1$. An order I of B is called a split order of level N, if it satisfies (i) if $p \mid d, \boldsymbol{I}_{p}=\boldsymbol{I} \otimes \boldsymbol{Z}_{p}$ is a maximal order of B_{p}, and (ii) if ($\left.p, d\right)=1$, there is an isomorphism $\varphi_{p}: \boldsymbol{B}_{p} \rightarrow \boldsymbol{M}_{2}\left(\boldsymbol{Q}_{p}\right)$ over \boldsymbol{Q}_{p} such that $\varphi_{p}\left(I_{p}\right)=\left(\begin{array}{rr}\boldsymbol{Z}_{p} & \boldsymbol{Z}_{p} \\ M \boldsymbol{Z}_{p} & \boldsymbol{Z}_{p}\end{array}\right)$. Now we fix a split order \boldsymbol{I} of level N, and an isomorphism $\varphi_{p}: B_{p} \rightarrow M_{2}\left(\boldsymbol{Q}_{p}\right)$ for each p prime to d, and write $\varphi_{p}(x)=\left(\begin{array}{ll}a_{p}(x) & b_{p}(x) \\ c_{p}(x) & d_{p}(x)\end{array}\right)$ for $x \in B_{p}$. In the following assume that B is indefinite unless otherwise stated, and fix an isomorphism $\varphi: B \otimes \boldsymbol{R} \rightarrow M_{2}(\boldsymbol{R})$. Let \boldsymbol{I}^{1} denote the group of all elements of reduced norm 1 in \boldsymbol{I}. Let $\Gamma=\Gamma(\boldsymbol{I})=\varphi\left(\boldsymbol{I}^{1}\right)$, and we identify Γ with \boldsymbol{I}^{1}, when convenient. Then Γ is a subgroup of the connected component $G L_{2}^{+}(\boldsymbol{R})$ of $G L_{2}(\boldsymbol{R})$. The group $G L_{2}^{+}(\boldsymbol{R})$ is acting on the complex upper half plane \boldsymbol{H} as linear fractional transformations. Under this action, \boldsymbol{H} / Γ has a finite invariant volume, and it is compact if and only if $d>1$.

Let c be a divisor of M, and $\chi:(\boldsymbol{Z} / \boldsymbol{C} \boldsymbol{Z})^{\times} \rightarrow \boldsymbol{C}^{\times}$be a primitive character modulo c. Let Δ be the subset of I consisting of all elements x such that $a_{p}(x) \not \equiv 0 \bmod p$ for any prime p dividing M. Starting from the given character χ, let us define the map $\chi: \Delta \rightarrow \boldsymbol{C}^{\times}$by the formula $\chi(x)=\prod_{p \mid c} \chi\left(a_{p}(x)\right)$ for $x \in \Delta$. This new χ is multiplicative on Δ, and its

