152. A Treatment of Some Function Spaces used for the Study of Hypoellipticity. I

By Hideo YAMAGATA

Department of Mathematics, College of Engineering, University of Osaka Prefecture, Mozu, Sakai City, Osaka

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 13, 1972)

Introduction. The space $\mathfrak{F}(\Omega) \equiv \bigcap_{i \in I} B_{p_i,k_i}^{\text{loc}}(\Omega)$ according to L. Hörmander [1] p. 45, p. 77 rather shows a common structure of the spaces belonging to a family. Then we will show here the above structure (with the extended form) described in the form of ranked space ([2] p. 4) in Theorem I-2 etc., § 1, and show the concrete meaning of transcendental ranks appearing in our ranked space in Example I-1, Next, we will show the concrete spaces as the special form of §1. "the space in § 1" in Theorems I-3, I-4, § 2. Our extension is based on the unified description of the theorems on hypoellipticity which is related to C^{∞} and related to a set of analytic functions defined in [3] p. 820 (cf. [1] p. 102, p. 178). The contents of this paper is a part of our further aim "the constructive systematization (i.e. ranked systematization by using transcendental ranks) for the theory of partial differential equation", because ranked space has a sort of totally ordered structure defined by the inclusion of pre-neighbourhoods with larger ranks.

§1. Extension of $\mathfrak{F}(\Omega)$ as a ranked space. Hereafter, we use the following notations; $K \equiv \{k(\xi); 0 \leq k(\xi+\eta) \leq (1+C|\xi|)^N k(\eta)$, where $C, N > 0, \xi, \eta \in \mathbb{R}^n\}$, $B_{p,k} \equiv \{u; u \in (\mathfrak{D}'), \hat{u} \equiv \mathfrak{F}u \to a \text{ function}, ||u||_{p,k} \equiv ((2\pi)^{-n} \int |k(\xi)\hat{u}(\xi)|^p d\xi \Big)^{1/p} < +\infty \}$, where $k \in K, 1 \leq p \leq \infty$ and $||u||_{\infty,k} \equiv \text{ess sup } |k(\xi)$ $\hat{u}(\xi)|$. $B_{p,k}^* \equiv \{u; u \in (\mathfrak{D}'), \mathfrak{F}^{-1}(k(\xi)\hat{u}(\xi)) \to a \text{ function}, ||u||_{p,k}^* \equiv ((2\pi)^{-n} \int |\mathfrak{F}^{-1}(k(\xi)\hat{u}(\xi))|^{p'} d\xi \Big)^{1/p'} < +\infty \}$, where p' = p/(p-1), p' = 1 for $p = \infty$, and $p' = \infty$ for p = 1. Ω ; open connected set in \mathbb{R}^n . $L(\Omega) \subseteq \{f; \text{ Carrier } f \subset \Omega\}$. P; diff. op. etc., $B_{p,k}^{\text{loc}}(\Omega; L, P) \equiv \{u; Pu \in (\mathfrak{D}'_{\alpha}), \varphi Pu \in B_{p,k} \text{ for } \forall \varphi \in L(\Omega)\}$, $B_{p,k}^{\text{loc}}(\Omega; \mathcal{C}_0^*, 1)$. If $B_{p,k}^{\text{loc}}(\Omega; L, P) = B_{p,k}^{\text{loc}}(\Omega; \tilde{L}, P)$ or $B_{p,k}^{\text{loc}}(\Omega; L, P) = B_{p,k}^{\text{loc}}(\Omega; \tilde{L}, P)$ we say that these spaces (in the left hand side) are countably local, where $\tilde{L}(\Omega) = \text{countable subset of } L(\Omega)$. There exists $\tilde{C}_0^{\infty}(\Omega)$ for $C_0^{\infty}(\Omega)$ (cf. [1] p. 44).

Definition I-1. Let I be a totally ordered set of limit or isolated