145. Analogue of Fourier's Method for Korteweg - de Vries Equation

By Shunichi Tanaka
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Nov. 13, 1972)

1. Introduction. In this paper we study the Kortewegde Vries (KdV) equation
(1) $\quad u_{t}-6 u u_{x}+u_{x x x}=0 \quad u=u(t)=u(x, t)-\infty<x, t<\infty$
for rapidly decreasing initial data. Gardner, Greene, Kruskal and Miura (G.G.K.M.) [2] have associated one dimensional Schrödinger operators $L_{u(t)}=-(d / d x)^{2}+u(t)$ to a solution of (1). They have found a simple formula describing the time variation of scattering data of $L_{u(t)}$. This paper is concerned with converse statement which may be viewed as a non-linear analogue of Fourier's method for solving linear partial differential equations of mathematical physics: Given the initial value one determine the scattering data of $L_{u(0)}$. Define scattering data for each t according to the formula of G.G.K.M. Using inverse scattering theory, one can construct potential $u(x, t)$ with prescribed scattering data for each t. Then $u(x, t)$ is a solution of (1).

Throughout the paper subscripts with independent variables denote partial differentiations. Integrations are taken over ($-\infty, \infty$) unless explicitly indicated.
2. Preparation from scattering theory. Consider one dimensional Schrödinger equation
(2) $-\phi_{x x}+u(x) \phi=\zeta^{2} \phi$.
Under the assumption that $(1+|x|) u(x)$ is integrable, the inverse scattering theory for (2) has been solved by Marchenko for the half line ($0, \infty$) and then the case of the infinite interval has been treated by Faddeev [1]. We follow [1] in this paper.

For each $\zeta=\xi+i \eta, \eta \geq 0$, there exist unique solutions $f_{ \pm}(x, \zeta)$ which behave like $\exp (\pm i \zeta x)$ as $x \rightarrow \pm \infty$. They are called Jost solutions of (2). Jost solutions are analytic in ζ, $\operatorname{Im} \zeta>0$. If $\zeta=\xi$ non-zero real, then f_{+}and its complex conjugate f_{+}^{*} are independent solutions of (2). One can express f_{-}as $f_{-}=a(\xi) f_{+}^{*}+b(\xi) f_{+} . a(\xi)$ is limiting value of a function $\alpha(\zeta)$ analytic in ζ, $\operatorname{Im} \zeta>0$. The (right) reflection coefficient $r(\xi)=b(\xi) a(\xi)^{-1}$ is defined for $\xi \neq 0$ and its absolute value is bounded by 1. $a(\zeta)$ has only a finite numbers of zeros. They are all simple and purely imaginary. We denote them by $i \eta_{1}, \cdots, i \eta_{N} . f_{ \pm}$are linearly dependent for $\zeta=i \eta_{j}$ and are square integrable because of the asymptotic

