145. Analogue of Fourier's Method for Korteweg - de Vries Equation

By Shunichi TANAKA
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, M. J. A., Nov. 13, 1972)

1. Introduction. In this paper we study the Korteweg-de Vries (KdV) equation

for rapidly decreasing initial data. Gardner, Greene, Kruskal and Miura (G.G.K.M.) [2] have associated one dimensional Schrödinger operators
$$L_{u(t)} = -(d/dx)^2 + u(t)$$
 to a solution of (1). They have found a simple formula describing the time variation of scattering data of $L_{u(t)}$. This paper is concerned with converse statement which may be viewed as a non-linear analogue of Fourier's method for solving linear partial differential equations of mathematical physics: Given the initial value one determine the scattering data of $L_{u(0)}$. Define scattering data for each t according to the formula of G.G.K.M. Using inverse scattering theory, one can construct potential $u(x,t)$ with prescribed scattering data for each t . Then $u(x,t)$ is a solution of (1).

Throughout the paper subscripts with independent variables denote partial differentiations. Integrations are taken over $(-\infty,\infty)$ unless explicitly indicated.

2. Preparation from scattering theory. Consider one dimensional Schrödinger equation

$$-\phi_{xx}+u(x)\phi=\zeta^2\phi.$$

Under the assumption that (1+|x|)u(x) is integrable, the inverse scattering theory for (2) has been solved by Marchenko for the half line $(0, \infty)$ and then the case of the infinite interval has been treated by Faddeev [1]. We follow [1] in this paper.

For each $\zeta = \xi + i\eta$, $\eta \ge 0$, there exist unique solutions $f_{\pm}(x,\zeta)$ which behave like $\exp(\pm i\zeta x)$ as $x \to \pm \infty$. They are called Jost solutions of (2). Jost solutions are analytic in ζ , $\operatorname{Im} \zeta > 0$. If $\zeta = \xi$ non-zero real, then f_+ and its complex conjugate f_+^* are independent solutions of (2). One can express f_- as $f_- = a(\xi)f_+^* + b(\xi)f_+$. $a(\xi)$ is limiting value of a function $a(\zeta)$ analytic in ζ , $\operatorname{Im} \zeta > 0$. The (right) reflection coefficient $r(\xi) = b(\xi)a(\xi)^{-1}$ is defined for $\xi \neq 0$ and its absolute value is bounded by 1. $a(\zeta)$ has only a finite numbers of zeros. They are all simple and purely imaginary. We denote them by $i\eta_1, \cdots, i\eta_N$. f_\pm are linearly dependent for $\zeta = i\eta_J$ and are square integrable because of the asymptotic