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1. Introduction. In this paper we study the Korteweg-
de Vries (KdV) equation
( 1 ) u--6uu+u=O u=u(t)=u(x,t)--c.x,tc
or rapidly decreasing initial data. Gardner, Greene, Kruskal and
Miura (G.G.K.M.) [2] have associated one dimensional SchrSdinger
operators L(t)----(d/dx)zTu(t) to a solution of (1). They have ound
a simple ormula describing the time variation o scattering data. o
Lu(t). This paper is concerned with converse statement which may be
viewed as a non-linear analogue of Fourier’s method or solving linear
partial differential equations of mathematical physics" Given the initial
value one determine the scattering data of L(0). Define scattering data
or each t according to the ormula of G.G.K.M. Using inverse
scattering theory, one can construct potential u(x, t) with prescribed
scattering data or each t. Then u(x, t) is a solution of (1).

Throughout the paper subscripts with independent variables denote
partial differentiations. Integrations are taken over (- c, c) unless
explicitly indicated.

2, Preparation from scattering theory, Consider one dimen-
sional SchrSdinger equation
( 2 ) --xx+u(x)
Under the assumption that (1 +lxl)u(x) is integrable, the inverse scatter-
ing theory or (2) has been solved by Marchenko or the hal line (0,
and then the case of the infinite interval has been treated by Faddeev
[1]. We follow [1] in this paper.

For each {=/i1, 1>_0, there exist unique solutions f(x, ) which
behave like exp (+i{x)as x- +_ oo. They are called Jost solutions of
(2). Jost solutions are analytic in , Imp>0. If = non-zero real,
then f/ and its complex conjugate f+* are independent solutions.of (2).
One can express f_ as f_-a()f*+ +b()f+. a() is limiting value of
function a()analytic in , Im {>0. The (right) reflection coefficient
r()=b()a()- is defined for :/=0 and its absolute value is bounded by
1. a({) has only a finite numbers of zeros. They are all simple and
purely imaginary. We denote them by i],..., i]. f are linearly
dependent for i] and are square integrable because of the asymptotic


