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163. Regularity of Solutions of Hyperbolic Mixed Problems
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(Comm. by Kinjird KUNUGI, M. J. A., Dec. 12, 1972)

§1. Introduction. At first we recall the following well-known
property of a solution of a hyperbolic Cauchy problem which is L*-well
posed: If the initial value is in H7(R"), then the solution is also in
H7(R™ for any time >0. We call this “The property of having finite -
norm is persistent”.

The author proved in [2] that, for a mixed problem to a first order
hyperbolic system, if this mixed problem is L*-well posed and the
boundary is not characteristic for the equation, then the property of
having finite 7-norm is persistent.

In this note we discuss whether the persistent property holds or
not in the case where the boundary is characteristic for the equation.
Let 2 be a sufficiently smooth domain in R*, M=d/ot—L(t,x; D,) be
a first order hyperbolic system whose coefficients are N X N matrices
in RB([0,TIx ) and P(t,x) be an N XN matrix defined on [0, T'] Xo%2.
Let us consider the mixed problem

1.1 Mlu(t, ©)1=f(t, x) in [0, TIX 2
(P) {(1.2) w(0, ) =¢(x) on 2
1.8) P(t, »)u(t, x)=0 on [0, T x08.

Definition. The mixed problem (P) is said to be L*-well posed if
for any initial data ¢(x) € D,={u(x) € H(2); P(0, x)ul,,=0} and any
second member f(t,x) e EXH(2) NENLH(Q)P there exists a unique
solution u(t, ) of (P) in EXLA(2)) N EAD(L(t))) satisfying the following
energy inequality

(L.4) lu® e (el + [, 1761 as),  telo,m,

where ¢(T) is a positive constant which depends only on T'.
We remark that 9D(I(t)) is the closure of D,={u(x)ec H(Q);
P(t)u |, =0} by the norm ||u| ., =||u|+| L(Oul. At first we state
Theorem 1. In the case where Q=R ={(,y);x>0,yeR"},

Lz[_g 8]a/ax—l— [2 (1)]8/ay and P=[1 0], the mixed problem (P) is

L*-well posed, but the property of having finite r-norm is not per-
sistent. More precisely, if the initial value o(x,y) € H™(R) satisfies

1) EYE) is the set of E-valued functions of ¢ which are k-times continuously
differentiable.



