162. Countable Structures for Uncountable Infinitary Languages

By Nobuyoshi Motohashi
Department of Mathematics, Gakushuin University, Tokyo
(Comm. by Kôsaku YosidA, m. J. A., Dec. 12, 1972)

In model theory of infinitary languages with countable conjunctions and finite strings of quantifiers in the sense of H. J. Keisler's book [3], we have some theorems which hold even in the case that there are uncountably many non-logical symbols, e.g. countable isomorphism theorem and countable definability theorem (cf. Scott [4], Chang [1] and Kueker [2]). Of course we have theorems which hold only in the case that there are at most countably many non-logical symbols, e.g. the existence theorem of Scott's sentence (cf. [3]).

In order to make clear the distinction between two kinds of theorems above mentioned we shall show that for each countable structure \mathfrak{A}, which is associated to an uncountable infinitary language L, there is a countable sublanguage L_{0} of L such that every formula in L is definable in \mathfrak{U} by a formula in L_{0}. We use the standard model theoretic terminology (cf. [2] and [3]). Let L be a first order language with countable conjunctions and finite strings of quantifiers and possibly uncountably many non-logical symbols. Then we have the following

Theorem. Let \mathfrak{A} be a countable structure for L. Then there is a countable sublanguage L_{0} of L such that for each formula $\varphi\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in L there is a formula $\psi\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in L_{0} such that

$$
\mathfrak{A} \vDash\left(\forall v_{1}\right)\left(\forall v_{2}\right) \cdots\left(\forall v_{n}\right)\left(\varphi\left(v_{1}, v_{2}, \cdots, v_{n}\right) \leftrightarrow \psi\left(v_{1}, v_{2}, \cdots, v_{n}\right)\right) .
$$

Proof. For each sequence $\sigma=\left\langle L^{\prime}, a_{1}, \cdots, a_{n}\right\rangle$, where L^{\prime} a countable sublanguage of L and a_{1}, \cdots, a_{n} are elements of $|\mathfrak{H}|$, let φ_{σ} be the Scott's sentence of the structure ($\mathfrak{H} \Gamma L^{\prime}, a_{1}, \cdots, a_{n}$) which is obtained from $\mathfrak{A} \Gamma L^{\prime}$, the reduct of \mathfrak{A} to L^{\prime}, by adding a_{1}, \cdots, a_{n} as new individuals. Then there is a formula $\varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)$ in L^{\prime} such that $\varphi_{\sigma}=\varphi_{o}$ $\left(a_{1}, \cdots, a_{n}\right)$, i.e. the sentence φ_{σ} is obtained from the formula $\varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)$ by replacing v_{1}, \cdots, v_{n} by a_{1}, \cdots, a_{n} respectively. (We identify the elements a_{i} in $|\mathfrak{Q}|$ and the constant symbols a_{i} corresponding to them.) Then for each b_{1}, \cdots, b_{n} in $|\mathfrak{R}|$, we have
(1) $\mathfrak{A} \vDash \varphi_{o}\left[b_{1}, \cdots, b_{n}\right] \Leftrightarrow\left(\mathfrak{H} \Gamma L^{\prime}, a_{1}, \cdots, a_{n}\right) \cong\left(\mathfrak{H} \Gamma L^{\prime}, b_{1}, \cdots, b_{n}\right)$.

Hence if $\sigma_{1}=\left\langle L_{1}, a_{1}, \cdots, a_{n}\right\rangle, \sigma_{2}=\left\langle L_{2}, a_{1}, \cdots, a_{n}\right\rangle$ and $L_{1} \subseteq L_{2}$, then we have
(2)

$$
\mathfrak{U} \vDash\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right)\left(\varphi_{\sigma_{2}}\left(v_{1}, \cdots, v_{n}\right) \rightarrow \varphi_{o_{1}}\left(v_{1}, \cdots, v_{n}\right)\right) .
$$

