160. On Green's Functions of Elliptic and Parabolic Boundary Value Problems

By Hiroki TANABE

Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., Dec. 12, 1972)

1. Introduction. Let A(x, D) be an elliptic operator of order m defined in a domain Ω of \mathbb{R}^n , and $B_j(x, D)$, $j=1, \dots, m/2$, be operators of order $m_j < m$ defined on $\partial \Omega$. We assume

(i) the system $(A(x, D), \{B_j(x, D)\}_{j=1}^{m/2}, \Omega)$ as well as its adjoint system $(A'(x, D), \{B'_j(x, D)\}_{j=1}^{m/2}, \Omega)$ formally constructed are both regular systems in the sense of S. Amon [1];

(ii) there is an angle $\theta_0 \in (0, \pi/2)$ such that $(e^{i\theta}D_t^m - A(x, D_x), \{B_j(x, D_x)\}_{j=1}^{m/2}, \Omega \times (-\infty < t < \infty))$ is an elliptic boundary value problem satisfying the coerciveness condition for any $\theta \in [\theta_0, 2\pi - \theta_0]$ (cf. S. Agmon [1]).

Let A be the operator defined by

 $D(A) = \{u \in H_m(\Omega) : B_j(x, D)u = 0 \text{ on } \partial\Omega, j = 1, \dots, m/2\}$ and (Au)(x) = A(x, D)u(x) for $u \in D(A)$. It is known that the operator defined analogously by the adjoint system $(A'(x, D), \{B'_j(x, D)\}, \Omega)$ coincides with the adjoint of A (F.E. Browder [5], [6]).

In this paper we describe a method of establishing global estimates for the Green's function of the resolvent of A as well as the semigroup exp (-tA) generated by -A. Under the present assumptions the resolvent $(A - \lambda)^{-1}$ exists for λ in the set defined by $\Lambda = \{\lambda : \theta_0 \leq \arg \lambda \leq 2\pi - \theta_0, |\lambda| > C_0\}$ for some $C_0 > 0$ ([1]) and -A generates a semigroup which is analytic in the sector $\Sigma = \{t : |\arg t| < \pi/2 - \theta_0\}$.

Theorem 1. Let $K_{\lambda}(x, y)$ be the kernel of $(A - \lambda)^{-1}$. Then there exist constants C and $\delta > 0$ such that

(a) $|K_{\lambda}(x,y)| \leq C e^{-\delta |\lambda|^{1/m} |x-y|} |\lambda|^{n/m-1}$ if m > n,

(b) $|K_{\lambda}(x,y)| \leq C e^{-\delta|\lambda|^{1/m}|x-y|} |x-y|^{m-n}$ if m < n,

(c) $|K_{\lambda}(x,y)| \leq Ce^{-\delta|\lambda|^{1/m}|x-y|} \{1 + \log^+(|\lambda|^{-1/m}|x-y|^{-1})\}$ if m=nfor $x, y \in \Omega$ and $\lambda \in \Lambda$.

Theorem 2. Let G(x, y, t) be the kernel of $\exp(-tA)$. Then there exist positive constants C and c such that

$$\begin{split} |G(x,y,t)| &\leq C \, |t|^{-n/m} \exp \, (-c \, |x-y|^{m/(m-1)} / |t|^{1/(m-1)}) e^{C|t|} \\ for \; x,y \in \mathcal{Q} \; and \; t \in \mathcal{S}. \end{split}$$

Remark 1. The boundedness of Ω is required in the assumption (i); however, it is not essential. The same results remain valid if Ω is an unbounded domain uniformly regular of class C^m and locally regular