160. On Green's Functions of Elliptic and Parabolic Boundary Value Problems

By Hiroki Tanabe
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Dec. 12, 1972)

1. Introduction. Let $A(x, D)$ be an elliptic operator of order m defined in a domain Ω of R^{n}, and $B_{j}(x, D), j=1, \cdots, m / 2$, be operators of order $m_{j}<m$ defined on $\partial \Omega$. We assume
(i) the system $\left(A(x, D),\left\{B_{j}(x, D)\right\}_{j=1}^{m / 2}, \Omega\right)$ as well as its adjoint system $\left(A^{\prime}(x, D),\left\{B_{j}^{\prime}(x, D)\right\}_{j=1}^{m / 2}, \Omega\right)$ formally constructed are both regular systems in the sense of S . Amon [1];
(ii) there is an angle $\theta_{0} \in(0, \pi / 2)$ such that ($e^{i \theta} D_{t}^{m}-A\left(x, D_{x}\right)$, $\left.\left\{B_{j}\left(x, D_{x}\right)\right\}_{j=1}^{m / 2}, \Omega \times(-\infty<t<\infty)\right)$ is an elliptic boundary value problem satisfying the coerciveness condition for any $\theta \in\left[\theta_{0}, 2 \pi-\theta_{0}\right]$ (cf. S. Agmon [1]).

Let A be the operator defined by

$$
D(A)=\left\{u \in H_{m}(\Omega): B_{j}(x, D) u=0 \text { on } \partial \Omega, j=1, \cdots, m / 2\right\}
$$

and $(A u)(x)=A(x, D) u(x)$ for $u \in D(A)$. It is known that the operator defined analogously by the adjoint system $\left(A^{\prime}(x, D),\left\{B_{j}^{\prime}(x, D)\right\}, \Omega\right)$ coincides with the adjoint of A (F.E. Browder [5], [6]).

In this paper we describe a method of establishing global estimates for the Green's function of the resolvent of A as well as the semigroup $\exp (-t A)$ generated by $-A$. Under the present assumptions the resolvent $(A-\lambda)^{-1}$ exists for λ in the set defined by $\Lambda=\left\{\lambda: \theta_{0} \leqq \arg \lambda \leqq 2 \pi\right.$ $\left.-\theta_{0},|\lambda|>C_{0}\right\}$ for some $C_{0}>0$ ([1]) and $-A$ generates a semigroup which is analytic in the sector $\Sigma=\left\{t:|\arg t|<\pi / 2-\theta_{0}\right\}$.

Theorem 1. Let $K_{\lambda}(x, y)$ be the kernel of $(A-\lambda)^{-1}$. Then there exist constants C and $\delta>0$ such that
(a) $\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}|\lambda|^{n / m-1} \quad$ if $m>n$,
(b) $\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}|x-y|^{m-n} \quad$ if $m<n$,
(c) $\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}\left\{1+\log ^{+}\left(|\lambda|^{-1 / m}|x-y|^{-1}\right)\right\} \quad$ if $m=n$
for $x, y \in \Omega$ and $\lambda \in \Lambda$.
Theorem 2. Let $G(x, y, t)$ be the kernel of $\exp (-t A)$. Then there exist positive constants C and c such that

$$
|G(x, y, t)| \leqq C|t|^{-n / m} \exp \left(-c|x-y|^{m /(m-1)} /|t|^{1 /(m-1)}\right) e^{C|t|}
$$

for $x, y \in \Omega$ and $t \in \Sigma$.
Remark 1. The boundedness of Ω is required in the assumption (i) ; however, it is not essential. The same results remain valid if Ω is an unbounded domain uniformly regular of class C^{m} and locally regular

