No. 1]

7. On Measurable Functions. I

By Masahiro TAKAHASHI

Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1973)

1. Introduction. An integral structure Γ was defined and an integral σ with respect to Γ was discussed in the author [3]. Let $\Lambda = (M, G, K, J)$ be an integral system and S a measurable ring of Λ . Then the fundamental integral structure $\Gamma = (\Lambda; S, \mathcal{G}, Q)$ is determined by Λ and S. Theorem 1 in [3] states that there exists a unique integral with respect to Γ provided that J is Hausdorff and complete. The set \mathcal{G} of all integrands is the integral closure of K in the total functional group \mathcal{F} of Λ with respect to the abstract integral structure (S, \mathcal{F}, J) .

In this part of the paper, we shall define the measurability of a function $f \in \mathcal{F}$ and state some properties of measurable functions. Some relations between the set \mathcal{H} of all measurable functions and the set \mathcal{G} of all integrands will be discussed in Part II.

2. Measurable functions. Assumption 2.1. M is a set and S is a ring of subsets of M.

A map f of M into a topological space K is measurable if $f^{-1}(O)$ $\cap X \in S$ for any open set O in K and for any $X \in S$.

Proposition 2.1. Let N be a set and A a set of subsets of N. Let f be a map of M into N such that $f^{-1}(Y) \cap X \in S$ for any $Y \in A$ and $X \in S$. Then we have

1) $f^{-1}(Y) \cap X \in S$ for any element Y of the ring generated by \mathcal{A} and for any $X \in S$.

2) Assume that S is a pseudo- σ -ring. Then $f^{-1}(Y) \cap X \in S$ for any element Y of the σ -ring generated by A and for any $X \in S$.

Proof. Putting $\mathcal{I} = \{Y | Y \subset N, f^{-1}(Y) \cap X \in \mathcal{S} \text{ for any } X \in \mathcal{S}\}$, we have $\mathcal{A} \subset \mathcal{I}$. For $Y, Z \in \mathcal{I}$ and for any $X \in \mathcal{S}$, it holds that $f^{-1}(Y-Z) \cap X = (f^{-1}(Y) - f^{-1}(Z)) \cap X = (f^{-1}(Y) \cap X) - (f^{-1}(Z) \cap X) \in \mathcal{S}$ and hence $Y - Z \in \mathcal{I}$. Analogously, $Y \cup Z \in \mathcal{I}$ for any $Y, Z \in \mathcal{I}$. Since $\phi \in \mathcal{I}$, it follows that \mathcal{I} is a ring containing \mathcal{A} . Hence \mathcal{I} contains the ring generated by \mathcal{A} and thus 1) is proved. If \mathcal{S} is a pseudo- σ -ring, we have $\bigcup_{i=1}^{\infty} Y_i \in \mathcal{I}$, for $Y_i \in \mathcal{I}, i=1, 2, \cdots$, and this implies that \mathcal{I} is a σ -ring containing \mathcal{A} . Thus 2) is proved.

Corollary 1. Let K be a topological space and suppose that a map f of M into K is measurable. Let \mathcal{I}_0 and \mathcal{I}_1 be the ring and the σ -ring, respectively, generated by the set of all open sets in K. Then we have

1) $f^{-1}(Y) \cap X \in S$ for any $Y \in \mathcal{T}_0$ and $X \in S$.