6. A Remark on Fluid Flows through Porous Media

By Yoshio Konishi

Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1973)

1. Introduction. According to Muskat [10], the mathematical model for flow through a homogeneous porous medium is the following degenerate quasilinear parabolic equation

$$\frac{\partial u}{\partial t} = \Delta u^m,$$

where u is the density distribution, Δ is the Laplace-Beltrami operator in the space variable x and m is a real constant >1. Physically m-1 is the ratio of specific heats c_p/c_v . Equations of this type are of great importance in technology (see Ames [1], 1.2); besides they have some properties which seem interesting from a purely mathematical point of view. See Oleinik $et\ al.$ [11], § 4; the author would refer the reader to the recent elaborate studies by Aronson [2]-[4]. (Of course the equation (*) has been studied by many other authors from various interesting aspects.)

To avoid unnecessary technical difficulties we concentrate our attention to flows through a medium which occupies all of the circle S^1 . We consider the following Cauchy problem

$$\left\{egin{array}{l} rac{\partial u}{\partial t}\!=\!rac{\partial^2}{\partial x^2}\!u^m & ext{in } S^1\! imes\!(0,T), \ u|_{t=0}\!=\!a(x) & x\in S^1, \end{array}
ight.$$

where a is a given non-negative function on S^1 called a initial datum and $0 < T < \infty$. If $a \in C(S^1)^+$ and $da^m/dx \in L^\infty(S^1)$, then the Cauchy problem (1) has a unique "weak solution" u such that $u \in C(S^1 \times [0, T])^+$ and $\partial u^m/\partial x \in L^\infty(S^1 \times (0, T))$ (cf. Oleinik et al. [11]). Here and throughout the paper we use the usual vector lattice notation, i.e., $C(S^1)^+$ is the cone of all non-negative elements of $C(S^1)$ etc. da^m/dx and $\partial u^m/\partial x$ are distribution derivatives of $a^m \in \mathcal{D}'(S^1)$ and $a^m \in \mathcal{D}'(S^1 \times (0, T))$ respectively.

The purpose of the present paper is to show the *continuous depend*ence of weak solutions on the initial data in the sense of $L^1(S^1)$. Our result reads:

Theorem. Suppose that

$$a,\hat{a}\in C(S^{\scriptscriptstyle 1})^{\scriptscriptstyle +} \quad and \quad rac{d}{dx}a^m,rac{d}{dx}\hat{a}^m\in L^\infty(S^{\scriptscriptstyle 1}).$$

Let u and \hat{u} be the corresponding unique weak solutions of (1) such that