21. On the Boundedness of a Class of Operator-valued Pseudo-differential Operators in L^p Space

By Tosinobu MURAMATU

Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1973)

Introduction. In this paper we present a class of pseudodifferential operators which are continuous in $L^{p}(\mathbb{R}^{n})$, 1 . Theywill play an important role in studying the complex interpolation spacesof Sobolev spaces (see [3]).

Our main tools are the operator-valued version of Calderón-Vaillancourt's L^2 -boundedness theorem ([2]), the Marcinkiewicz interpolation theorem, and the real-variable technique of Calderón and Zygmund which gives the weak-type estimate.

Notations. $\mathcal{L}(X, Y)$ —the space of bounded linear operators from a Banach space X to a Banach space Y.

 $L^{p}(E, d\mu; X)$ —the space of X-valued L^{p} functions on a measure space $(E, d\mu)$

 $L^{p}(\mathbf{R}^{n}; X) = L^{p}(\mathbf{R}^{n}, dx; X), \qquad L^{p}(E, d\mu) = L^{p}(E, d\mu; C).$ $x = (x_{1}, \dots, x_{n}) \in \mathbf{R}^{n}, \qquad \alpha = (\alpha_{1}, \dots, \alpha_{n}), \alpha_{j} \quad \text{are integers,}$ $x^{\alpha} = x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \qquad |\alpha| = \alpha_{1} + \dots + \alpha_{n},$ $|x|^{2} = x_{1}^{2} + \dots + x_{n}^{2}, \qquad D^{\alpha} = D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}, \qquad D_{j} = \partial/\partial x_{j}.$

 $\mathcal{S}(\mathbf{R}^n; X)$ —the space of X-valued rapidly decreasing \mathcal{C}^{∞} functions. m(S)—measure of the set $S \subset \mathbf{R}^n$. $a_n = m\{x \mid \mid x \mid \leq 1\}$.

Definition. Let X, Y be two Banach spaces. Then an $\mathcal{L}(X, Y)$ -valued infinitely differentiable function $p(x, \xi, y)$ of $(x, \xi, y) \in \mathbb{R}^n \times \mathbb{R}^n$ $\times \mathbb{R}^n$ belongs to $S^{\mu}_{s,\delta,\epsilon}(\mathbb{R}^{3n}, X; Y)$ if

(1) $||D_x^{\alpha}D_{\xi}^{\beta}p(x,\xi,y)||_{\mathcal{L}_{(X,Y)}} \leq C(1+|\xi|)^{\mu+\delta|\alpha|-\rho|\beta|},$

 $(2) \qquad \qquad \|D_y^{\rho}D_{\varepsilon}^{\rho}p(x,\xi,y)\|_{\mathcal{L}(X,Y)} \leq C(1+|\xi|)^{\mu+\varepsilon|\gamma|-\rho|\beta|},$

for any multi-index α , β , γ , where $0 \leq \rho$, δ , $\varepsilon \leq 1$.

For any p of this kind with $\varepsilon < 1$ and for any $f \in \mathcal{S}(\mathbb{R}^n; X)$ the integral

$$Tf(x) = \frac{1}{(2\pi)^n} \int e^{ix\xi} d\xi \int p(x,\xi,y) f(y) e^{-i\xi y} dy$$

= $\frac{1}{(2\pi)^n} \int (1+|\xi|^2)^{-m} (1-\Delta_y)^m \{ p(x,\xi,y) f(y) \} e^{i\xi(x-y)} d\xi dy$

is well defined and Tf belongs to $\mathcal{S}(\mathbb{R}^n; Y)$, where *m* is a positive integer such that $2m(1-\varepsilon) > \mu+n$, and Δ_y the Laplacian operator.

Theorem 1. Let X, Y be two Hilbert spaces,