41. A Remark on a Sufficient Condition for Hypoellipticity

By Akira Tsutsumi
College of General Education, Osaka University
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1973)

1. Introduction. Let $P=P\left(x, D_{x}\right)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha}$ be a differential operator where $x=\left(x_{1}, \cdots, x_{n}\right)$ is a point of a open subset Ω in real n-space $R_{x}^{n}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a multi-index with its length $|\alpha|=\alpha_{1}$ $+\cdots+\alpha_{n}$ and $D_{x}^{\alpha}=\left(-i \partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\alpha_{n}}$. For $\xi \in R^{n}$ we denote $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}},|\xi|=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2},\langle\xi\rangle=1+|\xi|, P(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}$ and $P_{(\beta)}^{(\alpha)}(x, \xi)=D_{\xi}^{\alpha}\left(i D_{x}\right)^{\beta} P(x, \xi)$.

Simple and weak sufficient conditions for hypoellipticity are given by L. Hörmander which include not only differential operators but also pseudo-differential operators ([2] § 4 Theorem 4.2, p. 164). In this note we shall give a slightly different sufficient condition for hypoellipticity which is stated by using a basic weight function depending also on the x-variable instead of $\langle\xi\rangle$ only. The usage such a basic weight function is effective for study of asymptotic behavior of spectral function of hypoelliptic differential operator which will appear in a forthcoming paper.

We confine ourselves in case of differential operators but it seems quite possible to extend it in case of pseudo-differential operators, because the proof of the main theorem depends on a construction of a parametrix just along the arguments in [1] and [2]. I wish to thank Mr. M. Nagase for his advice through discussion.
2. Theorem and outline of the proof. Theorem. Let $P(x, \xi)$ be written in the sum $P(x, \xi)=p_{0}(x, \xi)+p_{1}(x, \xi)$ where $p_{0}=p_{0}(x, \xi)$ and $p_{1}=p_{1}(x, \xi)$ satisfy the following conditions:
(2.1) The coefficients are in C^{∞}.

For any $x \in \Omega$ and α and β there exist the constants $C_{x, \alpha, \beta}>0, C_{x}>0$, and $A_{x}>0$ such that

$$
\begin{equation*}
\left|p_{0(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{x, \alpha, \beta}\left|p_{0}(x, \xi)\right|^{-\rho|\alpha|+\delta|\beta|} \tag{2.2}
\end{equation*}
$$

(2.2)' $\quad\left|p_{1(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{x, \alpha, \beta}\left|p_{0}(x, \xi)\right|^{1-\rho(|\alpha|+1)+\delta(|\beta|+1)} \quad$ for $|\xi| \geq A_{x}$, where ρ and δ are some constants depending only on $P(x, D)$ and satisfying $0 \leqslant \delta<\rho \leqslant 1$,

$$
\begin{equation*}
\left|p_{0}(x, \xi)\right| \geq C_{x}|\xi|^{m^{\prime}} \quad 0<m^{\prime} \leq m, \quad \text { for }|\xi| \geq A_{x} \tag{2.3}
\end{equation*}
$$ $m^{\prime} \delta<1$,

and $C_{x, \alpha, \beta}, C_{x}$ and A_{x} are bounded when x is in compact subset of Ω. Then the operator $P\left(x, D_{x}\right)$ is hypoelliptic : $u \in \mathscr{D}^{\prime}(\Omega)$ satisfying the equa-

