70. Finitely Generated N-Semigroup and Quotient Group

By John C. HIGGINS and Takayuki TAMURA Brigham Young University and University of California, Davis (Comm. by Kenjiro Shoda, M. J. A., May 22, 1973)

- 1. Introduction. An \mathfrak{N} -semigroup is a commutative cancellative archimedean semigroup which has no idempotent. The structure and construction of finitely generated or power joined \mathfrak{N} -semigroups were studied by [2], [3], [5], [6], and also by [4] from the more general point of view. This paper treats finitely generated \mathfrak{N} -semigroups as subsemigroups of the direct product of the positive integer semigroup and a finite abelian group by using the quotient group and its torsion subgroup. Finitely generated \mathfrak{N} -semigroups are characterized by their quotient group.
- 2. Preliminaries. In this paper we denote the additive semi-group of integers, positive integers, negative integers, non-negative integers, and positive rational numbers by Z, Z_+ , Z_- , Z_+^0 , and R respectively.

Proposition 1 ([1], [6]). Let G be an abelian group and $I: G \times G \to \mathbb{Z}_+^0$ be a function satisfying

(1.1) $I(\alpha, \beta) = I(\beta, \alpha)$

- for all $\alpha, \beta \in G$.
- (1.2) $I(\alpha, \beta) + I(\alpha\beta, \gamma) = I(\alpha, \beta\gamma) + I(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in G$.
- (1.3) $I(\varepsilon, \alpha) = 1$ (ε being the identity of G) for all $\alpha \in G$.
- (1.4) For each $\alpha \in G$ there is $m \in \mathbb{Z}_+$ such that $I(\alpha, \alpha^m) > 0$.

Let $S = \{(x, \alpha) : x \in \mathbb{Z}_+^0, \alpha \in G\}$. Define an operation

$$(x, \alpha)(y, \beta) = (x + y + I(\alpha, \beta), \alpha\beta).$$

Then S is an \mathfrak{N} -semigroup. Every \mathfrak{N} -semigroup can be obtained in this manner.

S is denoted by S=(G;I). The group G is termed the structure group of S with respect to $(0,\varepsilon)$, the function I is called an index function or \mathcal{J} -function corresponding to G. For a given \Re -semigroup S, for each $a \in S$, the relation ρ_a on S is defined by

 $x \rho_a y$ if and only if $a^m x = a^n y$ for some $m, n \in \mathbb{Z}_+$.

Then ρ_a is a congruence on S and $G_a = S/\rho_a$ is an abelian group. Each ρ_a -class contains exactly one element p_a , $\alpha \in G_a$, such that $p_a \notin Sa$. Then S is isomorphic onto $(G_a; I_a)$ where $p_{\alpha\beta} = a^{I_a(\alpha,\beta)}p_\alpha p_\beta$.

A commutative semigroup S is called power joined if for every $a,b\in S$ there are $m,n\in Z_+$ such that $a^m=b^n$. If S is power joined, it is archimedean.

Proposition 2 ([5]). An \Re -semigroup S=(G; I) is power joined if