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1. Introduction. An -semigroup is a commutative cancellative
archimedean semigroup which has no idempotent. The structure and
construction of finitely generated or power joined -semigroups were
studied by [2], [3], [5], [6], and also by [4] from the more general point
of view. This paper treats finitely generated -semigroups as sub-
semigroups of the direct product of the positive integer semigroup and
a finite abelian group by using the quotient group and its torsion sub-
group. Finitely generated -semigroups are characterized by their
quotient group.

2. Preliminaries. In this paper we denote the additive semi-
group of integers, positive integers, negative integers, non-negative
integers, and positive rational numbers by Z, Z/, Z_, Z+, and R
respectively.

Proposition 1 ([1], [6]). Let G be an abelian group and I: GG
Z+ be a function satisfying
(1.1) I(a, fl)--I(fl, ) for all , fl e G.
(1.2) I(c, fl) +I(fl, ,)= I(c, fl) + I(fl, ’) for all c, fi, , e G.
(1.3) I(s, c)= 1 ( being the identity of G) for all e G.
(1.4) For each e G there is m e Z+ such that I(a, )0.
Let S= {(x, ) x e Z+, e G}. Define an operation

(x, a)(y, fl)-- (x +y +I(c, fl) aft).
Then S is an -semigroup. Every -semigroup can be obtained in this
manner.

S is denoted by S--(G;I). The group G is termed the structure
group o S with respect to (0, D, the unction I is called an index
unction or q-unction corresponding to G. For a given -semigroup
S, for each a e S, the relation p on S is defined by

xp y if and only i ax-ay or some m, n e Z+.
Then p is a congruence on S and G=S/p is an abelian group. Each
p-class contains exactly one element p, a e G, such thatp e Sa. Then
S is isomorphic onto (G ;I) where

A commutative semigroup S is called power joined if or every
a, b e S there are m, n e Z/ such that a= b. If S is power joined, it
is archimedean.

Proposition 2 ([5]). An -semigroup S=(G; I) is power joined if


