94. Codimension 1 Foliations on Simply Connected 5-Manifolds

By Kazuhiko Fukui
Mathematical Institute, Kyoto University
(Comm. by Kinjirô Kunugı, M. J. A., June 12, 1973)

1. Recently N. A'Campo [1] has shown that every simply connected, closed 5-manifold with vanishing second Stiefel-Whitney class admits a codimension 1 foliation. The essential point in his construction is to utilize Smale's classification theorem [4].

In this note, similarly utilizing Barden's result [2], we show that every simply connected, closed 5 -manifold admits a codimension 1 foliation. All the manifolds and the foliations considered here, are smooth of class C^{∞}.
2. Preliminaries. a) The second Stiefel-Whitney class $\omega^{2}(M)$ of a simply connected manifold M may be regarded as a homomorphism $\omega^{2}: H_{2}(M: Z) \rightarrow \boldsymbol{Z}_{2}$, and we may consider ω^{2} to be non-zero on at most one element of a basis. In a simply connected 5 -manifold, the value of ω^{2} on the homology class carried by an imbedded 2 -sphere is the obstruction to the triviality of its normal bundle. Such a "non-zero valued" class has order 2^{i} for some positive integer i. Then i is a diffeomorphism invariant $i(M)$ of M.
D. Barden [2] has classified simply connected, closed, smooth 5manifolds under diffeomorphism. Such a manifold is determined by $H_{2}()$ and $i()$. More precisely :

Proposition 1 [2]. Simply connected, closed, smooth, oriented 5manifolds are classified under diffeomorphism as follows. A canonical set of representatives is $\left\{X_{j} \# M_{k_{l}} \# \cdots \# M_{k_{s}}\right\}$, where $-1 \leqq j \leqq \infty, s \geqq 0$, $1<k_{1}$ and k_{i} divides k_{i+1} or $k_{i+1}=\infty$. A complete set of invariants is provided by $H_{2}(M)$ and $i(M)$. (for the notation, see [2], p. 373.)
b) S^{2}-bundles over S^{2} with group SO_{3} are classified by $\pi_{1}\left(\mathrm{SO}_{3}\right) \cong Z_{2}$. We denote by A the product, and by B the non-trivial bundle. Next consider reductions of the structure group to SO_{2}, which are classified by $\pi_{1}\left(\mathrm{SO}_{2}\right) \cong Z$. Let T_{k} be the S^{2}-bundle associated with the reduction given by the integer k. Furthermore, let x be the class in $H_{2}\left(T_{k}\right)$ of the sphere imbedded as the cross-section, corresponding to the "south pole", and y be the class of the sphere imbedded as a fiber. If \cdot denotes the intersection number of homology class, then $x \cdot x=k, x \cdot y=1$ (we have the orientation of y to ensure this) and $y \cdot y=0$. For the homology bases of A, B, we shall reduce the bundles as T_{0}, T_{1}. Then we have, in [5]

