94. Codimension 1 Foliations on Simply Connected 5-Manifolds

By Kazuhiko FUKUI Mathematical Institute, Kyoto University (Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1973)

1. Recently N. A'Campo [1] has shown that every simply connected, closed 5-manifold with vanishing second Stiefel-Whitney class admits a codimension 1 foliation. The essential point in his construction is to utilize Smale's classification theorem [4].

In this note, similarly utilizing Barden's result [2], we show that every simply connected, closed 5-manifold admits a codimension 1 foliation. All the manifolds and the foliations considered here, are smooth of class C^{∞} .

2. Preliminaries. a) The second Stiefel-Whitney class $\omega^2(M)$ of a simply connected manifold M may be regarded as a homomorphism $\omega^2: H_2(M: \mathbb{Z}) \to \mathbb{Z}_2$, and we may consider ω^2 to be non-zero on at most one element of a basis. In a simply connected 5-manifold, the value of ω^2 on the homology class carried by an imbedded 2-sphere is the obstruction to the triviality of its normal bundle. Such a "non-zero valued" class has order 2^i for some positive integer *i*. Then *i* is a diffeomorphism invariant i(M) of M.

D. Barden [2] has classified simply connected, closed, smooth 5manifolds under diffeomorphism. Such a manifold is determined by $H_2()$ and i(). More precisely:

Proposition 1 [2]. Simply connected, closed, smooth, oriented 5manifolds are classified under diffeomorphism as follows. A canonical set of representatives is $\{X_j \# M_{k_l} \# \cdots \# M_{k_s}\}$, where $-1 \leq j \leq \infty, s \geq 0$, $1 < k_1$ and k_i divides k_{i+1} or $k_{i+1} = \infty$. A complete set of invariants is provided by $H_2(M)$ and i(M). (for the notation, see [2], p. 373.)

b) S^2 -bundles over S^2 with group SO_3 are classified by $\pi_1(SO_3) \cong \mathbb{Z}_2$. We denote by A the product, and by B the non-trivial bundle. Next consider reductions of the structure group to SO_2 , which are classified by $\pi_1(SO_2) \cong \mathbb{Z}$. Let T_k be the S^2 -bundle associated with the reduction given by the integer k. Furthermore, let x be the class in $H_2(T_k)$ of the sphere imbedded as the cross-section, corresponding to the "south pole", and y be the class of the sphere imbedded as a fiber. If \cdot denotes the intersection number of homology class, then $x \cdot x = k$, $x \cdot y = 1$ (we have the orientation of y to ensure this) and $y \cdot y = 0$. For the homology bases of A, B, we shall reduce the bundles as T_0 , T_1 . Then we have, in [5]