93. Amenable Transformation Groups. II

By Kôkichi SAKAI

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1973)

Introduction. Let X be a nonvoid set and G be a group of transformations of *X* onto itself. Then we shall say the pair X=(G,X) is a transformation group. Let m(X) be the Banach space of all bounded real functions on X and $m(X)^*$ the conjugate Banach space of m(X). For every $s \in G$, define the mapping $l_s : m(X) \rightarrow m(X)$ by $l_s f = {}_s f$ for any $f \in m(X)$ where $_s f(x) = f(sx)$ for $x \in X$, and denote by L_s the adjoint of l_s . For $\varphi \in m(X)^*$ it is called a mean if $\varphi \geq 0$ and $\varphi(I_X) = 1$ where I_X is the constant one function on X. A mean φ is called *multiplicative* if $\varphi(f \cdot g) = \varphi(f) \cdot \varphi(g)$ for any $f, g \in m(X)$. For a subset K of G, a mean φ is K-invariant if $L_s\varphi=\varphi$ for all $s\in K$. We denote by δ_x the Dirac measure at $x \in X$. Let IM(X) [βX] be the set of all G-invariant [multiplicative] means. We shall say the transformation group X = (G, X) is amenable if IM(X) is nonempty.

The purpose of this paper is to characterize the transformation group X=(G,X) such that $IM(X)\cap Co(\beta X)$ is nonempty where $Co(\beta X)$ is the convex hull of βX and to study the extreme point of the convex set $IM(X)\cap Co(\beta X)$. For semigroups the analogous problem is investigated by A. T. Lau in [3] and [4].

§ 1. Multiplicative means. In this section we give the Lemmas used in later sections. Let X=(G,X) be a transformation group and $\varphi \in m(X)^*$ be a mean. For any subset A of X, we write $\varphi(A)$ instead of $\varphi(I_A)$ where I_A is the characteristic function of A. We put $H(\varphi) = \{s \in G : L_s \varphi = \varphi\}$.

Lemma 1. Let $\Phi = \{ \varphi_i \in \beta X : i = 1, 2, \dots, m \text{ and } \varphi_i \neq \varphi_j \text{ if } i \neq j \}$ and $\Psi = \{ \psi_i \in \beta X : i = 1, 2, \dots, n \text{ and } \psi_i \neq \psi_j \text{ if } i \neq j \}$. If $\sum_{i=1}^m \lambda_i \varphi_i = \sum_{i=1}^n \mu_i \psi_i$ where λ_i 's and μ_i 's are positive numbers, then $\Phi = \Psi$.

Lemma 2. Let $\varphi_0 \in \beta X$. For a subset $\{a_1, a_2, \dots, a_n\}$ of G put $\varphi_i = L_{a_i}\varphi_0 \in \beta X$ for $1 \le i \le n$. If $\varphi_1, \varphi_2, \dots, \varphi_n$ are mutually distinct, there is a subset $A_0 \subset X$ such that for any $1 \le i, j \le n$ $\varphi_i(A_j) = \delta_{ij}$ and $A_i \cap A_j = \phi$ $(i \ne j)$ where $A_i = a_i A_0$.

Now for a mean φ we consider the condition (#): there is a positive constant c such that $\varphi(A) \geq c$ or $\varphi(A) = 0$ for any $A \subset X$. If the condition (#) is satisfied, there is a subset $A \subset X$ such that $\varphi(A) > 0$ and that $\varphi(A \cap B)$ is equal to $\varphi(A)$ or 0 for any $B \subset X$. For example, every $\varphi \in Co(\beta X)$ satisfies the condition (#).

Lemma 3. Let $\varphi \in IM(X)$ satisfy the condition (#) and A be a