93. Amenable Transformation Groups. II

By Kôkichi Sakai

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1973)

Introduction. Let X be a nonvoid set and G be a group of transformations of X onto itself. Then we shall say the pair $X=(G, X)$ is a transformation group. Let $m(X)$ be the Banach space of all bounded real functions on X and $m(X)^{*}$ the conjugate Banach space of $m(X)$. For every $s \in G$, define the mapping $l_{s}: m(X) \rightarrow m(X)$ by $l_{s} f={ }_{s} f$ for any $f \in m(X)$ where ${ }_{s} f(x)=f(s x)$ for $x \in X$, and denote by L_{s} the adjoint of l_{s}. For $\varphi \in m(X)^{*}$ it is called a mean if $\varphi \geqq 0$ and $\varphi\left(I_{X}\right)=1$ where I_{X} is the constant one function on X. A mean φ is called multiplicative if $\varphi(f \cdot g)=\varphi(f) \cdot \varphi(g)$ for any $f, g \in m(X)$. For a subset K of G, a mean φ is K-invariant if $L_{s} \varphi=\varphi$ for all $s \in K$. We denote by δ_{x} the Dirac measure at $x \in X$. Let $I M(X)[\beta X]$ be the set of all G-invariant [multiplicative] means. We shall say the transformation group $X=(G, X)$ is amenable if $I M(X)$ is nonempty.

The purpose of this paper is to characterize the transformation group $X=(G, X)$ such that $I M(X) \cap C o(\beta X)$ is nonempty where $C o(\beta X)$ is the convex hull of βX and to study the extreme point of the convex set $I M(X) \cap C o(\beta X)$. For semigroups the analogous problem is investigated by A. T. Lau in [3] and [4].
§ 1. Multiplicative means. In this section we give the Lemmas used in later sections. Let $\boldsymbol{X}=(G, X)$ be a transformation group and $\varphi \in m(X)^{*}$ be a mean. For any subset A of X, we write $\varphi(A)$ instead of $\varphi\left(I_{A}\right)$ where I_{A} is the characteristic function of A. We put $H(\varphi)$ $=\left\{s \in G: L_{s} \varphi=\varphi\right\}$.

Lemma 1. Let $\Phi=\left\{\varphi_{i} \in \beta X: i=1,2, \cdots, m\right.$ and $\varphi_{i} \neq \varphi_{j}$ if $\left.i \neq j\right\}$ and $\Psi=\left\{\psi_{i} \in \beta X: i=1,2, \cdots, n\right.$ and $\psi_{i} \neq \psi_{j}$ if $\left.i \neq j\right\}$. If $\sum_{i=1}^{m} \lambda_{i} \varphi_{i}=\sum_{i=1}^{n} \mu_{i} \psi_{i}$ where λ_{i} 's and μ_{i} 's are positive numbers, then $\Phi=\Psi$.

Lemma 2. Let $\varphi_{0} \in \beta X$. For a subset $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of G put φ_{i} $=L_{a_{i}} \varphi_{0} \in \beta X$ for $1 \leqq i \leqq n$. If $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ are mutually distinct, there is a subset $A_{0} \subset X$ such that for any $1 \leqq i, j \leqq n \varphi_{i}\left(A_{j}\right)=\delta_{i j}$ and $A_{i} \cap A_{j}$ $=\phi(i \neq j)$ where $A_{i}=a_{i} A_{0}$.

Now for a mean φ we consider the condition (\#) : there is a positive constant c such that $\varphi(A) \geqq c$ or $\varphi(A)=0$ for any $A \subset X$. If the condition (\#) is satisfied, there is a subset $A \subset X$ such that $\varphi(A)>0$ and that $\varphi(A \cap B)$ is equal to $\varphi(A)$ or 0 for any $B \subset X$. For example, every $\varphi \in C o(\beta X)$ satisfies the condition (\#).

Lemma 3. Let $\varphi \in I M(X)$ satisfy the condition (\#) and A be a

