87. Cotangential Decomposition of the Sheaf $\mathscr{D}^{\prime} / \mathcal{E}$

By Daisuke FuJIwara and Kôichi Uchiyama
University of Tokyo

(Comm. by Kôsaku Yosida, m. J. A., June 12, 1973)

The aim of this note is to construct a sheaf in the distribution theory which has analogous properties to those of the sheaf \mathcal{C} important in the hyperfunction theory.

Let Ω be a domain in R^{n} and let $\mathscr{D}^{\prime}, \mathcal{E}, \mathcal{B}$ and \mathcal{A} denote the sheaves of the germs of distributions, infinitely differentiable functions, hyperfunctions and real analytic functions in Ω respectively. The quotient sheaves $\mathscr{D}^{\prime} / \mathcal{E}, \mathscr{B} / \mathcal{A}$ and $\mathscr{D}^{\prime} / \mathcal{A}$ should be called the sheaves of singularities over Ω. In 1969 M . Sato decomposed the sheaf $\mathscr{B} / \mathcal{A}$ into the cotangential directions. That is, he constructed a sheaf \mathcal{C} over the cosphere bundle $S^{*} \Omega$ whose direct image $\pi_{*} \mathcal{C}$ along the projection π onto the base space Ω is isomorphic to the sheaf $\mathscr{B} / \mathcal{A}$. Actually this induces an isomorphism of global sections:

$$
\mathscr{B}(\Omega) / \mathcal{A}(\Omega) \cong \pi_{*} \mathcal{C}(\Omega) \cong \mathcal{C}\left(S^{*} \Omega\right) .
$$

The sheaf \mathcal{C} is flabby as well as the sheaf \mathscr{B}. (See Sato-Kashiwara [3], Sato-Kawai-Kashiwara [4].)

Let $\mathscr{H}_{\mathrm{Ioc}}^{s}$ be the sheaf of distributions in the local Sobolev space $H_{\text {loc }}^{s}(\Omega)$. In this note we decompose the sheaf $\mathcal{H}_{\text {loc }}^{s} / \mathcal{E}$ to obtain a sheaf \mathscr{M}^{s} over the cosphere bundle $S^{*} \Omega$ such that the following isomorphisms

$$
H_{\mathrm{ioc}}^{s}(\Omega) / \mathcal{E}(\Omega) \cong \pi_{*} \mathscr{S}^{s}(\Omega) \cong \mathscr{N}^{s}\left(S^{*} \Omega\right)
$$

hold. This sheaf \mathscr{M}^{s} is soft.
The supports of sections of \mathscr{M}^{s} are closed subsets of the cosphere bundle $S^{*} \Omega$. These correspond to what is called "singular supports $S-S$ " in the theory of the sheaf \mathcal{C}. Their projections to the base space Ω coincide with the classical singular supports of distributions. Our definition of the sheaf \mathscr{M}^{s} is essentially the same as announced in Hörmander's paper [1]. And the wave front sets introduced by him in the case of $\mathscr{D}^{\prime} \mid \mathcal{E}$ are nothing but the supports of the sections of our sheaf $\mathscr{M}^{-\infty}$.

Let ω be an open set in Ω and σ be an open set in the unit sphere S^{n-1} in \boldsymbol{R}^{n}.

We shall introduce linear spaces as the following.
$H_{\mathrm{loc}}^{s, \infty}(\omega \times \sigma)=\left\{u \in H_{\mathrm{loc}}^{s}(\omega)\right.$; for any compact sets $K \subset \omega \subset \Omega$ and $\kappa \subset \sigma$ $\subset S^{n-1}$, there exists a function $\phi_{K} \in C_{0}^{\infty}(\omega)$ such that (i) $\phi_{K} \geqq 0$ and $\phi_{K} \equiv 1$ near K and (ii) for any positive integer $N,|\widehat{\phi u}(\xi)| \leqq C_{N} /(1+|\xi|)^{N}$ so long

