hold.

87. Cotangential Decomposition of the Sheaf \mathcal{D}'/\mathcal{E}

By Daisuke FUJIWARA and Kôichi UCHIYAMA University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., June 12, 1973)

The aim of this note is to construct a sheaf in the distribution theory which has analogous properties to those of the sheaf C important in the hyperfunction theory.

Let Ω be a domain in \mathbb{R}^n and let $\mathfrak{D}', \mathfrak{C}, \mathfrak{B}$ and \mathcal{A} denote the sheaves of the germs of distributions, infinitely differentiable functions, hyperfunctions and real analytic functions in Ω respectively. The quotient sheaves $\mathfrak{D}'/\mathfrak{C}, \mathfrak{B}/\mathfrak{A}$ and $\mathfrak{D}'/\mathfrak{A}$ should be called the sheaves of singularities over Ω . In 1969 M. Sato decomposed the sheaf $\mathfrak{B}/\mathfrak{A}$ into the cotangential directions. That is, he constructed a sheaf \mathcal{C} over the cosphere bundle $S^*\Omega$ whose direct image $\pi_*\mathcal{C}$ along the projection π onto the base space Ω is isomorphic to the sheaf $\mathfrak{B}/\mathfrak{A}$. Actually this induces an isomorphism of global sections:

 $\mathcal{B}(\Omega)/\mathcal{A}(\Omega)\cong\pi_*\mathcal{C}(\Omega)\cong\mathcal{C}(S^*\Omega).$

The sheaf C is flabby as well as the sheaf \mathcal{B} . (See Sato-Kashiwara [3], Sato-Kawai-Kashiwara [4].)

Let $\mathscr{H}^s_{\text{loc}}$ be the sheaf of distributions in the local Sobolev space $H^s_{\text{loc}}(\Omega)$. In this note we decompose the sheaf $\mathscr{H}^s_{\text{loc}}/\mathscr{E}$ to obtain a sheaf \mathscr{M}^s over the cosphere bundle $S^*\Omega$ such that the following isomorphisms $H^s_{\text{loc}}(\Omega)/\mathscr{E}(\Omega) \cong \pi_*\mathscr{M}^s(\Omega) \cong \mathscr{M}^s(S^*\Omega)$

This sheaf \mathcal{M}^s is soft.

The supports of sections of \mathcal{M}^s are closed subsets of the cosphere bundle $S^*\Omega$. These correspond to what is called "singular supports S-S" in the theory of the sheaf \mathcal{C} . Their projections to the base space Ω coincide with the classical singular supports of distributions. Our definition of the sheaf \mathcal{M}^s is essentially the same as announced in Hörmander's paper [1]. And the wave front sets introduced by him in the case of \mathcal{D}'/\mathcal{C} are nothing but the supports of the sections of our sheaf $\mathcal{M}^{-\infty}$.

Let ω be an open set in Ω and σ be an open set in the unit sphere S^{n-1} in \mathbb{R}^n .

We shall introduce linear spaces as the following.

 $H^{s,\infty}_{\text{loc}}(\omega imes \sigma) = \{ u \in H^s_{\text{loc}}(\omega) ; \text{ for any compact sets } K \subset \omega \subset \Omega \text{ and } \kappa \subset \sigma \subset S^{n-1}, \text{ there exists a function } \phi_K \in C^{\infty}_0(\omega) \text{ such that (i) } \phi_K \ge 0 \text{ and } \phi_K \equiv 1 \text{ near } K \text{ and (ii) for any positive integer } N, |\widehat{\phi u}(\xi)| \le C_N/(1+|\xi|)^N \text{ so long}$