115. Characterizations of Compactness and Countable Compactness

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., July 12, 1973)

It is known that if a topological space Y is compact, then the following condition is satisfied.

(*) For every topological space X, each mapping of X into Y with closed graph is continuous.

The purpose of this note is to show that this condition characterizes compact spaces among T_1 spaces by proving somewhat strengthened result. A similar characterization of countably compact spaces is also stated.

Recall that a net in a set X is an ordered pair $(f, (D, \leq))$ of a directed set (D, \leq) and a mapping f of D into X. If a is an element of a directed set (D, \leq) , we denote by D(a) the set of all $x \in D$ with $a \leq x$.

Let S be a class of topological spaces containing the class of Hausdorff completely normal and fully normal spaces. Thus for example S may be the class of Hausdorff completely regular spaces or that of paracompact spaces. We have the following

Theorem 1. A T_1 topological space Y is compact if and only if for every topological space X belonging to S, each mapping of X into Y with closed graph is continuous.

Proof. Only the proof of the "if" part is needed. Suppose that Y is not compact. Then there is a net $(f, (D, \leq))$ in Y which has no adherent point. Let $\infty \notin D$, and let $X = D \cup \{\infty\}$. It is easy to see that the family $\mathcal{P}(D) \cup \{D(x) \cup \{\infty\} | x \in D\}$ is a base for a topology τ on X, where $\mathcal{P}(D)$ denotes the power set of D.

To prove that τ is Hausdorff, it suffices to show that for every $x \in D$, there is an element $y \in D \setminus \{x\}$ with $x \leq y$, since this implies $\{x\} \cap (D(y) \cup \{\infty\}) = \emptyset$. To this end suppose the contrary: there is an $x \in D$ such that $x \leq y$ does not hold for any $y \in D \setminus \{x\}$. If $y \in D$, then we have $x \leq z$ and $y \leq z$ for some $z \in D$, and consequently z = x and $y \leq x$. Therefore we have $y \leq x$ for all $y \in D$, which yields however a contradiction that f(x) is an adherent point of the net $(f, (D, \leq))$.

Let us proceed to prove that (X, τ) is completely normal. Let Aand B be separated subsets of X, i.e., $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. If $\infty \notin \overline{A}$, then \overline{A} and $\overline{A^c} = X \setminus \overline{A}$ are open disjoint and $B \subset \overline{A^c}$. If $\infty \notin B$, then B