109. On the Global Existence of Real Analytic Solutions of Systems of Linear Differential Equations with Constant Coefficients

By Tetsuji MIWA

Department of Mathematics, University of Tokyo (Comm. by Kôsaku Yosida, M. J. A., July 12, 1973)

In this note we shall give a necessary and sufficient condition for the global existence of real analytic solutions of systems of linear differential equations with constant coefficients. Recently L. Hörmander [1] has given a necessary and sufficient condition for single equations. Our result is a direct extension of Hörmander's.

1. Statements of the problem and the theorem. Let A be the ring of linear partial differential operators with constant coefficients in C^n . We may consider $A = C[\zeta_1, \dots, \zeta_n]$. Let M be an A module of finite type. Then it has a representation

(1.1) $0 \leftarrow M \leftarrow A^{t} \leftarrow A^{t} \leftarrow A^{s}$

where $P(\zeta)$ is a $t \times s$ matrix with elements in A, and we can consider the system of equations with constant coefficients ${}^{t}P(D)$ where $D=(D_{1}, \dots, D_{n})$ and $D_{i}=-\sqrt{-1}\partial/\partial x_{i}$. But such a representation is not unique and it is not ${}^{t}P$ but M that has an intrinsic meaning. Therefore we call M a system. (See V.P. Palamodov [2], M. Kashiwara [3], and M. Sato, T. Kawai and M. Kashiwara [4].)

Now let Ω be a convex domain in \mathbb{R}^n and $\mathcal{A}(\Omega)$ be the set of real analytic functions in Ω . Ext¹_A $(M, \mathcal{A}(\Omega))$ gives the obstruction of the global existence of real analytic solutions of inhomogeneous system ${}^{t}P(D)u = f$ where f satisfies compatibility conditions ${}^{t}Q(D)f = 0$. Our problem is when

(1.2) $\operatorname{Ext}_{A}^{1}(M, \mathcal{A}(\Omega)) = 0$

is valid. Note that $\operatorname{Ext}_{A}^{1}(M, \mathcal{A}(\Omega))$ is independent of the choice of the representation (1.1).

Before stating our theorem let us recall some notions in commutative algebra. (See J. P. Serre [5] and Palamodov [2].) Let $0=M_1\cap\cdots$ $\cap M_i$ be a primary decomposition of the submodule 0 in M. Ass (M) is the set of associated prime ideals of M, that is, the set of radicals p_i $=r_M(M_i)=\{a \in A; \exists q \in Z_+ a^q M \subset M_i\} \ (i=1,\cdots,l). V(M)=\{V_1,\cdots,V_i\}$ is the set of characteristic varieties, that is, the set of irreducible algebraic varieties associated to ideals in Ass (M).

Now we introduce the notion of components at infinity of charac-