105. On Prehomogeneous Compact Kähler Manifolds

By Kazuo AKAO University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., July 12, 1973)

1. In this note we establish some results on classification of compact complex prehomogeneous Kähler manifolds. Details will appear elsewhere. By a compact prehomogeneous manifold, we mean a compact complex manifold whose automorphism group has an open orbit. In [4], J. Potters classified prehomogeneous compact complex surfaces. In what follows we shall state a couple of structure theorems on prehomogeneous compact Kähler manifolds and a classification of such manifolds with coirregularity less than 3.

For convenience sake, we list here some notations and terminologies used below. Let V be a compact complex manifold.

Aut[°](V)=the connected biholomorphic automorphism group of V. A(V)=the Albanese torus of V.

 $q(V) = \dim H^1(V, \mathcal{O})$ which is called the irregularity of V.

 $cq(V) = \dim V - q(V)$ which is called the coirregularity of V.

By a regular manifold we mean a compact complex manifold whose irregularity vanishes. For a complex analytic vector bundle E on V, we denote by P(E) the projective bundle associated with E.

2. First we state certain general theorems on prehomogeneous manifolds. The following Proposition 1 can be proved by using a lemma due to R. Remmert and van de Ven (see, Potters [4]).

Proposition 1. A compact complex prehomogeneous manifold is a locally trivial analytic fibre bundle over a compact complex solvmanifold whose fibre is prehomogeneous with trivial Albanese torus.

Corollary. A compact Kähler prehomogeneous manifold V is a holomorphic fibre bundle over its Albanese torus A(V) with a regular prehomogeneous fibre.

In fact every Kähler solvmanifold is isomorphic to a complex torus. In what follows we always assume that V is Kähler.

Proposition 2. If q(V)=0, then V is a unirational projective variety.

Proof. For the projectivity of V, see Oeljekraus [3]. We prove the unirationality. Since V is regular, V can be imbedded into a projective space P^n such that this imbedding induces an inclusion of G=Aut°(V) into PGL(n). This shows that G and its stabilizer subgroup at every point of V are both linear algebraic groups. Since by as-