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1. In this note we establish some results on classification of com-
pact complex prehomogeneous Kiahler manifolds. Details will appear
elsewhere. By a compact prehomogeneous manifold, we mean a com-
pact complex manifold whose automorphism group has an open orbit.
In [4], J. Potters classified prehomogeneous compact complex surfaces.
In what follows we shall state a couple of structure theorems on pre-
homogeneous compact Kihler manifolds and a classification of such
manifolds with coirregularity less than 3.

For convenience sake, we list here some notations and termi-
nologies used below. Let V be a compact complex manifold.

Aut°(V)=the connected biholomorphic automorphism group of V.

A(V)=the Albanese torus of V.

q(V)=dim H'(V, ©®) which is called the irregularity of V.

cq(V)=dim V —q(V) which is called the coirregularity of V.

By a regular manifold we mean a compact complex manifold whose
irregularity vanishes. For a complex analytic vector bundle E on V,
we denote by P(E) the projective bundle associated with E.

2. First we state certain general theorems on prehomogeneous
manifolds. The following Proposition 1 can be proved by using a
lemma due to R. Remmert and van de Ven (see, Potters [4]).

Proposition 1. A compact complex prehomogeneous manifold is
a locally trivial analytic fibre bundle over a compact complex solvman-
ifold whose fibre is prehomogeneous with trivial Albanese torus.

Corollary. A compact Kihler prehomogeneous manifold V is a
holomorphic fibre bundle over its Albanese torus A(V) with a regular
prehomogeneous fibre.

In fact every Kihler solvmanifold is isomorphic to a complex torus.

In what follows we always assume that V is Kéhler.

Proposition 2. If q(V)=0, then V is a unirational projective
variety.

Proof. For the projectivity of V, see Oeljekraus [3]. We prove
the unirationality. Since V is regular, V can be imbedded into a pro-
jective space P" such that this imbedding induces an inclusion of G
=Aut°(V) into PGL(n). This shows that G and its stabilizer subgroup
at every point of V are both linear algebraic groups. Since by as-



