156. On the Elementary Partitions of the State Set in a Multiple-Input Semiautomaton

By Masami Ito
Kyoto Sangyo University, Kyoto
(Comm. by Kinjirô Kunugı, m. J. A., Nov. 12, 1973)

1. Introduction. Determination of all homomorphic images of a given semiautomaton is equivalent to constructing all admissible partitions of its state set.

For the case of a one-input semiautomaton, there exists an efficient method for the construction of all admissible partitions. This can be done easily by determining all elementary partitions [1], [2].

For the case of a multiple-input semiautomaton, it seems complicated at first sight. But, even in this case, if all elementary partitions can be constructed, we can use the same procedure as the one-input case and we can obtain all admissible partitions.

In this note, we shall give an algorithm for constructing all elementary partitions of the state set in a multiple-input semiautomaton by using known elementary partitions for the one-input case. We shall borrow many notations and terms from [1].
2. Preliminaries. Consider a semiautomaton $A=(S, \Sigma, M)$, where S is a set of states, $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\}(n \geq 2)$ is a set of inputs, and M is a set of transition mappings.

Definition 1. Let π be a partition of S. $\tilde{\pi}$ is called the admissible closure of π in A if and only if $\tilde{\pi}=\Pi_{i \in \Lambda} \xi_{i}$, where $\left\{\xi_{i} ; i \in \Lambda\right\}$ is the set of all admissible partitions in A such that $\pi \leq \xi_{i}(i \in \Lambda)$.

In section 4, we shall give a method for constructing the admissible closure $\tilde{\pi}$ of π.

Definition 2. An admissible partition $\pi \neq 0$ of S in A, where 0 means the identity partition, is called elementary if and only if for every admissible partition π^{\prime} of S in $A, 0 \leq \pi^{\prime} \leq \pi$ implies $\pi^{\prime}=0$ or $\pi^{\prime}=\pi$.
3. Structure of elementary partitions. For the semiautomaton given in the preceding section, we shall construct following one-input semiautomata:

Put $\Sigma_{i}=\left\{\sigma_{i}\right\}$ and $M_{i}=\left\{\sigma_{i}^{A}\right\}=\left\{\sigma_{i}^{A_{i}}\right\}$ for each natural number $i(1 \leq i \leq n)$. Thus, we obtain the one-input semiautomata $A_{i}=\left(S, \Sigma_{i}, M_{i}\right)(1 \leq i \leq n)$.

For each semiautomaton $A_{i}(1 \leq i \leq n)$, the set of all elementary partitions of S in A_{i} can be determined by the procedure introduced in [1], [2]. We denote this set by \mathscr{P}_{i}.

