145. On the Singularity of the Spectral Measures of a Semi-Infinite Random System

By Yoshiake YOSHIOKA

(Comm. by Kôsaku Yosida, M. J. A., Nov. 12, 1973)

1. Introduction. H. Matsuda and K. Ishii [1] showed an exponential growth character of polynomials related to a second order difference operator with random coefficients by invoking a limit theorem of H. Furstenberg [4]. A. Casher and J. L. Lebowitz [3] then used this character to derive the singularity of the related spectral measure. We refer the reader to K. Ishii [2] for an improvement of the proof of [3] and for the related physical problems.

The purpose of this note is to simplify the proof of the Matsuda-Ishii theorem and to give an extension of Ishii's results. Let (Ω, \mathcal{B}, P) be a probability space on which are defined independent real random variables $\{\nu_n(\omega)\}_{n=0}^{\infty}$ with common distribution ν . We consider the following random system on the semi-infinite lattice $Z^+ = \{0, 1, 2, 3, \cdots\}$

(a)
$$\begin{cases} i\frac{du_n(t)}{dt} = u_{n-1}(t) - (2+\nu_n)u_n(t) + u_{n+1}(t), \\ u_{-1}(t) = 0, \ n \in Z^+, \ t \in [0, \infty). \end{cases}$$

Putting $u_n(t) = y_n e^{-i\lambda t}$, we are led to the following difference equation (b) $\lambda y_n = y_{n-1} - (2 + \nu_n)y_n + y_{n+1}$, $n \in Z^+$, $y_{-1} = 0$.

Let $\{p_n^{\omega}(\lambda)\}_{n=0}^{\infty}$ be the solution of (b) under the conditions $y_0=1$ and $y_{-1}=0$. Denote by l_0 the space of all functions on Z^+ with finite supports. We introduce an infinite Jacobi matrix $H^{\omega}=(h_{ij})$, $i, j \in Z^+$, with $h_{ij}=1, |i-j|=1, h_{ii}=-(2+\nu_i), i \in Z^+$, and $h_{ij}=0, |i-j|>1$. $\{H^{\omega}\}$ are regarded as linear operators with domain l_0 . Then H^{ω} is an essentially self-adjoint operator on $l^2(Z^+)$ for each $\omega \in \Omega$ and we denote its smallest closed extension by H^{ω} again [5]. We further introduce the resolvent $G^{\omega}(\lambda)=(\lambda-H^{\omega})^{-1}$. Then we have the following expression of $G^{\omega}_{mm}(\lambda)=(G^{\omega}(\lambda)e_m,e_m), m \in Z^+$, [6].

$$G_{mm}^{\omega}(\lambda) = \{p_{mm}^{\omega}(\lambda)\}^2 \sum_{i=m}^{\infty} \frac{1}{p_i^{\omega}(\lambda)p_{i+1}^{\omega}(\lambda)}, \quad \text{Im } \lambda \neq 0.$$

Now let $E^{\omega}(\lambda)$ be the resolution of the identity of H^{ω} . K. Ishii [2] showed that, for almost every fixed $\omega \in \Omega$, $\rho_n^{\omega}(\lambda) = (E^{\omega}(\lambda)e_n, e_n)$, $n \in Z^+$, are singular with respect to the Lebesgue measure $d\lambda$ under the assumption that the support of ν is finite and is not a single point. We will show that this is still true under the weaker assumptions that $\int_{-\infty}^{\infty} |c| d\nu(c) < \infty$ and that the support of ν is not a single point