145. On the Singularity of the Spectral Measures of a Semi-Infinite Random System

By Yoshiake Yoshioka
(Comm. by Kôsaku Yosida, m. J. A., Nov. 12, 1973)

1. Introduction. H. Matsuda and K. Ishii [1] showed an exponential growth character of polynomials related to a second order difference operator with random coefficients by invoking a limit theorem of H. Furstenberg [4]. A. Casher and J. L. Lebowitz [3] then used this character to derive the singularity of the related spectral measure. We refer the reader to K. Ishii [2] for an improvement of the proof of [3] and for the related physical problems.

The purpose of this note is to simplify the proof of the MatsudaIshii theorem and to give an extension of Ishii's results. Let (Ω, \mathscr{B}, P) be a probability space on which are defined independent real random variables $\left\{\nu_{n}(\omega)\right\}_{n=0}^{\infty}$ with common distribution ν. We consider the following random system on the semi-infinite lattice $Z^{+}=\{0,1,2,3, \cdots\}$

$$
\left\{\begin{array}{l}
i \frac{d u_{n}(t)}{d t}=u_{n-1}(t)-\left(2+\nu_{n}\right) u_{n}(t)+u_{n+1}(t), \tag{a}\\
u_{-1}(t)=0, n \in Z^{+}, t \in[0, \infty)
\end{array}\right.
$$

Putting $u_{n}(t)=y_{n} e^{-i \lambda t}$, we are led to the following difference equation (b)

$$
\lambda y_{n}=y_{n-1}-\left(2+\nu_{n}\right) y_{n}+y_{n+1}, n \in Z^{+}, y_{-1}=0 .
$$

Let $\left\{p_{n}^{\omega}(\lambda)\right\}_{n=0}^{\infty}$ be the solution of (b) under the conditions $y_{0}=1$ and $y_{-1}=0$. Denote by l_{0} the space of all functions on Z^{+}with finite supports. We introduce an infinite Jacobi matrix $H^{\omega}=\left(h_{i j}\right), i, j \in Z^{+}$, with $h_{i j}=1,|i-j|=1, h_{i i}=-\left(2+\nu_{i}\right), i \in Z^{+}$, and $h_{i j}=0,|i-j|>1$. $\left\{H^{\omega}\right\}$ are regarded as linear operators with domain l_{0}. Then H^{ω} is an essentially self-adjoint operator on $l^{2}\left(Z^{+}\right)$for each $\omega \in \Omega$ and we denote its smallest closed extension by H^{ω} again [5]. We further introduce the resolvent $G^{\omega}(\lambda)=\left(\lambda-H^{\omega}\right)^{-1}$. Then we have the following expression of $G_{m m}^{\omega}(\lambda)$ $=\left(G^{\omega}(\lambda) e_{m}, e_{m}\right), m \in Z^{+}$, [6].

$$
G_{m m}^{\omega}(\lambda)=\left\{p_{m m}^{\omega}(\lambda)\right\}^{2} \sum_{i=m}^{\infty} \frac{1}{p_{i}^{\omega}(\lambda) p_{i+1}^{\omega}(\lambda)}, \quad \operatorname{Im} \lambda \neq 0
$$

Now let $E^{\omega}(\lambda)$ be the resolution of the identity of H^{ω}. K. Ishii [2] showed that, for almost every fixed $\omega \in \Omega, \rho_{n}^{\omega}(\lambda)=\left(E^{\omega}(\lambda) e_{n}, e_{n}\right), n \in Z^{+}$, are singular with respect to the Lebesgue measure $d \lambda$ under the assumption that the support of ν is finite and is not a single point. We will show that this is still true under the weaker assumptions that $\int_{-\infty}^{\infty}|c| d \nu(c)<\infty$ and that the support of ν is not a single point

