# 175. Index Theorem for a Maximally Overdetermined System of Linear Differential Equations 

By Masaki Kashiwara<br>Research Institute for Mathematical Sciences, Kyoto University<br>(Comm. by Kunihiko Kodaira, m. J. a., Dec. 12, 1973)

In this note we state the index theorem for a maximally overdetermined system of linear partial differential equations. The theorem comprises as a special case the already known index theorem for an ordinary differential equation (Kashiwara [2], Komatsu [4] and Malgrange [5]).

1. Local characteristic. Let $(S, x)$ be a germ of an irreducible analytic space. We define the local characteristic $c_{x}(S)$ by the induction on the dimension of $S$ as follows.

We embed ( $S, x$ ) into an enclidean space ( $C^{N}, 0$ ) and choose a Whitney stratification $S=\cup S_{\alpha}$ of $S$. The open stratum of $S$ is denoted by $S_{0}$. Let $d_{\alpha}$ be the dimension of $S_{\alpha}$ and $x_{\alpha}$ be a point in $S_{\alpha}$. We define $c_{x}(S)$ inductively by the following formula

$$
c_{x}(S)=\sum_{S_{\alpha} \neq S_{0}} c_{x}\left(\bar{S}_{\alpha}\right) \chi\left(U_{\alpha} \cap S_{0} \cap Z_{\alpha}\right)
$$

where $U_{\alpha}$ denotes a sufficiently small open ball with center $x_{\alpha}, Z_{\alpha}$ denotes a ( $d_{\alpha}+1$ )-codimensional linear variety in a generic position in $C^{N}$ sufficiently close to $x_{\alpha}, \chi$ denotes the Euler characteristic and the sum extends over all the strata $S_{\alpha}$ other than $S_{0}$.

Proposition. The definition of a local characteristic $c_{x}(S)$ is independent of the choice of the embedding $(S, x) \subset\left(C^{N}, 0\right)$ and the stratification.
We will give the expamples of local characteristics.
Example 1. If $(S, x)$ is non singular, then $c_{x}(S)=1$.
Example 2. If $(S, x)$ is a hypersurface in $C^{n+1}$ with the isolated singularity at $x$, then $c_{x}(S)=1+(-1)^{n-1} \mu$ where $\mu$ is the Milnor number of the generic hyperplane section of $S$ through the point $x$. In particular, for $S=\left\{x \in C^{n+1} ; x_{0}^{p_{0}}+\cdots+x_{n}^{p_{n}}=0\right\}$, we have $c_{0}(S)=1$ $+(-1)^{n-1}\left(p_{1}-1\right) \cdots\left(p_{n}-1\right)$ with $p_{0}=\max _{j} p_{j}$

Example 3. If ( $S, x$ ) is a curve, then $c_{x}(S)$ coincides with the multiplicity of $S$ at $x$.

Example 4. If $S=\left\{(x, y, z) \in C^{3} ; x^{n}+y^{p} z^{q}=0\right\}$ (g. c. d. $(p, q, n)=1$ and $p, q, n \geqq 1$ ), then $c_{0}(S)=\min (n, p)+\min (n, q)-n$.
2. Index theorem. Let $X$ be a complex manifold, $\mathcal{O}$ be the sheaf of holomorphic functions on $X, \mathscr{D}$ be the sheaf of differential operators

