173. Associative Rings of Order p³

By Robert GILMER and Joe MOTT*)
Department of Mathematics, Florida State University
(Comm. By Kenjiro Shoda, M. J. A., Dec. 12, 1973)

For the positive integer n, let R(n) be a complete set of representatives of the isomorphism classes of associative rings of order n, and let $\rho(n)$ be the number of elements in R(n). We discuss here some aspects of the problem of determining the set R(n), and hence of determining $\rho(n)$.

If $n = p_1^{e_1} \cdots p_k^{e_k}$ is the prime factorization of n, then it is well known that $\rho(n) = \rho(p_1^{e_1}) \cdots \rho(p_k^{e_k})$; this is true since a ring R of order n is uniquely decomposable as the direct sum of ideals I_1, \dots, I_k of orders $p_1^{e_1}, \dots, p_k^{e_k}$. Hence to determine R(n) or $\rho(n)$, it suffices to determine $R(p_i^{e_i})$ or $\rho(p_i^{e_i})$ for $1 \le i \le k$. For a prime p, the sets R(p) and $R(p^2)$ are known; before describing these sets, we discuss an alternate approach to a determination of the set R(n).

Each ring of order n is an additive abelian group and a complete set G(n) of representatives of the isomorphism classes of abelian groups of order n is well known. Moreover, G(n) contains $p(e_1)p(e_2)\cdots p(e_k)$ elements, where p(s) is the number of partitions of the positive integer s [4, p. 164]. Hence if $G(n) = \{G_1, \dots, G_t\}$ and if for the abelian group G, R(G) is a complete set of representatives of the isomorphism classes of associative rings with additive group G, then $R(n) = \bigcup_{i=1}^{t} R(G_i)$ is a partition of the set R(n). If the group G is cyclic of order d, then the elements of R(G) are in one-to-one correspondence with the positive divisors of d, and hence R(G) contains $\tau(d)$ elements [3, p. 263]. fact, if d_i is a positive divisor of d, then the ring $C_{d,d_i} = XZ[X]/(dX)$, $X^{2}-d_{i}X$) is in R(G) and $R(G)=\{C_{d,d_{i}}\}_{i=1}^{\tau(d)}$, where $\{d_{i}\}_{i=1}^{\tau(d)}$ is the set of positive divisors of d. Each of the rings C_{d,d_i} is commutative; only the ring $C_{d,1} \simeq Z/(d)$ has an identity. The ring $C_{d,d}$ is the trivial ring on the cyclic group of order d; we also use the notation N_d (for null ring) for this ring.

It follows from the preceding paragraph that $R(p) = \{\Pi_p = Z/(p), N_p\}$. To within isomorphism there are eleven associative rings of order p^2 [1, p. 918], [5, p. 227], and in fact, $R(p^2)$ consists of the rings $Z/(p^2)$, $C_{p^2,p}$, N_{p^2} with cyclic additive group and the rings $\Pi_p \oplus \Pi_p$, $\Pi_p \oplus N_p$, $N_p \oplus N_p$, $GF(p^2)$, $\Pi_p[X]/(X^2)$, $X\Pi_p[X]/X^3\Pi_p[X]$, A, B with additive group and the rings $\Pi_p \oplus \Pi_p$, $\Pi_p \oplus N_p$,

^{*} Research supported in part by NSF Grant 33027X.