173. Associative Rings of Order \mathbf{p}^{3}

By Robert Gilmer and Joe Moti*)
Department of Mathematics, Florida State University
(Comm. By Kenjiro ShodA, M. J. A., Dec. 12, 1973)

For the positive integer n, let $R(n)$ be a complete set of representatives of the isomorphism classes of associative rings of order n, and let $\rho(n)$ be the number of elements in $R(n)$. We discuss here some aspects of the problem of determining the set $R(n)$, and hence of determing $\rho(n)$.

If $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ is the prime factorization of n, then it is well known that $\rho(n)=\rho\left(p_{1}^{e_{1}}\right) \cdots \rho\left(p_{k}^{e_{k}}\right)$; this is true since a ring R of order n is uniquely decomposable as the direct sum of ideals I_{1}, \cdots, I_{k} of orders $p_{1}^{e_{1}}, \cdots, p_{k}^{e_{k}}$. Hence to determine $R(n)$ or $\rho(n)$, it suffices to determine $R\left(p_{i}^{e_{i}}\right)$ or $\rho\left(p_{i}^{e_{i}}\right)$ for $1 \leq i \leq k$. For a prime p, the sets $R(p)$ and $R\left(p^{2}\right)$ are known; before describing these sets, we discuss an alternate approach to a determination of the set $R(n)$.

Each ring of order n is an additive abelian group and a complete set $G(n)$ of representatives of the isomorphism classes of abelian groups of order n is well known. Moreover, $G(n)$ contains $p\left(e_{1}\right) p\left(e_{2}\right) \cdots p\left(e_{k}\right)$ elements, where $p(s)$ is the number of partitions of the positive integer s [4, p. 164]. Hence if $G(n)=\left\{G_{1}, \cdots, G_{t}\right\}$ and if for the abelian group $G, R(G)$ is a complete set of representatives of the isomorphism classes of associative rings with additive group G, then $R(n)=\bigcup_{i=1}^{t} R\left(G_{i}\right)$ is a partition of the set $R(n)$. If the group G is cyclic of order d, then the elements of $R(G)$ are in one-to-one correspondence with the positive divisors of d, and hence $R(G)$ contains $\tau(d)$ elements [3, p. 263]. In fact, if d_{i} is a positive divisor of d, then the ring $C_{d, d_{i}}=X Z[X] /(d X$, $\left.X^{2}-d_{i} X\right)$ is in $R(G)$ and $R(G)=\left\{C_{d, a_{i}}\right\}_{i=1}^{\tau(d)}$, where $\left\{d_{i}\right\}_{i=1}^{\tau(d)}$ is the set of positive divisors of d. Each of the rings $C_{d, d_{i}}$ is commutative; only the ring $C_{d, 1} \simeq Z /(d)$ has an identity. The ring $C_{d, d}$ is the trivial ring on the cyclic group of order d; we also use the notation N_{d} (for null ring) for this ring.

It follows from the preceding paragraph that $R(p)=\left\{I_{p}\right.$ $\left.=Z /(p), N_{p}\right\}$. To within isomorphism there are eleven associative rings of order p^{2} [1, p. 918], [5, p. 227], and in fact, $R\left(p^{2}\right)$ consists of the rings $Z /\left(p^{2}\right), C_{p^{2}, p}, N_{p^{2}}$ with cyclic additive group and the rings $\Pi_{p} \oplus \Pi_{p}$, $\Pi_{p} \oplus N_{p}, N_{p} \oplus N_{p}, G F\left(p^{2}\right), \Pi_{p}[X] /\left(X^{2}\right), X \Pi_{p}[X] / X^{3} \Pi_{p}[X], A, B$ with addi-

[^0]
[^0]: *) Research supported in part by NSF Grant 33027X.

