# 172. Numerical Experiments on a Conjecture of B. C. Mortimer and K. S. Williams 

By Masahiko Sato*) and Masataka Yorinaga**)

(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1973)

Let $p$ be a rational prime and $n$ a positive integer $\geqq 2$. We denote by $a_{n}(p)$ the least positive integral value of $a$ for which the polynomial $x_{n}+x+a$ is irreducible $(\bmod p)$, and set

$$
a_{n}=\liminf _{p \rightarrow \infty} a_{n}(p) .
$$

B. C. Mortimer and K. S. Williams [2] have stated the following

Conjecture. Put $a_{2}^{*}=1$ and for $n \geqq 3$ define

$$
a_{n}^{*}=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0,1 & (\bmod 3), \\
2 & \text { if } n \equiv 2 & (\bmod 6) \\
3 & \text { if } n \equiv 5 & (\bmod 6)
\end{array}\right.
$$

Then we have $a_{n}=a_{n}^{*}$.
K. S. Williams [5] proved that this conjecture is in fact true for $n=2$ and 3 , and Mortimer and Williams [2] verified the conjecture for all $n \leqq 20$ with the aid of a computer. The results of S. Uchiyama [4] show that the conjecture is true whenever $n$ itself is a prime number.

In § 1 of the present paper we shall show that the conjecture is true for all $n \leqq 40$ by making use of an algorithm which is faster than the one used in [2]. As to the discriminant $D_{n}$ of the polynomial $x_{n}+x+a_{n}^{*}$, it is possible to examine the values of it for a fairly wider range of $n$, and we observe in $\S 2$ some arithmetical properties of $D_{n}$ that will be of an independent interest. The computations in § 1 were accomplished by the first-named author and those in § 2 were done by the second-named author.

The authors wish to express here their sincerest thanks to Prof. S. Hitotumatu and Prof. S. Uchiyama for the valuable suggestions.
§ 1. Irreducibility of $\boldsymbol{x}^{n}+\boldsymbol{x}+\boldsymbol{a}_{n}^{*}(\bmod \boldsymbol{p})$. Our basic tool is as in [4] the following theorem which is an immediate consequence of the Frobenius density theorem (cf. [1; Chap. IV, § 5]).

Theorem 1. Let $n \geqq 2$. If there exists some prime $p$ such that $f_{n}(x)=x^{n}+x+a_{n}^{*}$ is irreducible $(\bmod p)$, then $a_{n}=a_{n}^{*}$.

Thus, if we can find some prime $p$ such that $f_{n}(x)$ is irreducible $(\bmod p)$, then the conjecture of Mortimer and Williams is true for this $n$. Our algorithm is based on the following three theorems.

[^0]
[^0]:    *) Department of Mathematics, Kyoto University, Kyoto.
    **) Department of Mathematics, Okayama University, Okayama.

